Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Med Chem ; 64(16): 11904-11933, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382802

RESUMO

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.


Assuntos
Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biomolecules ; 10(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963199

RESUMO

Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic lethality of this enzyme and fumarate hydratase (FH). In the current study, we aimed to validate the effect of genetic and pharmacological inhibition of HO-1 in cells isolated from patients suffering from hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-an inherited cancer syndrome, caused by FH deficiency. Initially, we confirmed that UOK 262, UOK 268, and NCCFH1 cell lines are characterized by non-active FH enzyme, high expression of Nrf2 transcription factor-regulated genes, including HMOX1 and attenuated oxidative phosphorylation. Later, we demonstrated that shRNA-mediated genetic inhibition of HMOX1 resulted in diminished viability and proliferation of cancer cells. Chemical inhibition of HO activity using commercially available inhibitors, zinc and tin metalloporphyrins as well as recently described new imidazole-based compounds, especially SLV-11199, led to decreased cancer cell viability and clonogenic potential. In conclusion, the current study points out the possible relevance of HO-1 inhibition as a potential anti-cancer treatment in HLRCC. However, further studies revealing the molecular mechanisms are still needed.


Assuntos
Fumarato Hidratase/genética , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Leiomiomatose/genética , Leiomiomatose/terapia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fumarato Hidratase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Leiomiomatose/tratamento farmacológico , Leiomiomatose/metabolismo , Metaloporfirinas/farmacologia , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Síndromes Neoplásicas Hereditárias/metabolismo , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo
4.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276659

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
5.
Bioorg Med Chem Lett ; 29(4): 646-653, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626557

RESUMO

In oncology, the "Warburg effect" describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia-induced 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) plays a noteworthy role in the regulation of glycolysis by producing fructose-2,6-biphosphate (F-2,6-BP), a potent activator of the glycolysis rate-limiting phosphofructokinase PFK-1. Series of amides and sulfonamides derivatives based on a N-aryl 6-aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluation.


Assuntos
Amidas/química , Fosfofrutoquinase-2/antagonistas & inibidores , Quinoxalinas/química , Quinoxalinas/farmacologia , Sulfonamidas/química , Células HCT116 , Humanos , Cinética , Solubilidade
6.
ChemMedChem ; 14(1): 169-181, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30378281

RESUMO

Energy and biomass production in cancer cells are largely supported by aerobic glycolysis in what is called the Warburg effect. The process is regulated by key enzymes, among which phosphofructokinase PFK-2 plays a significant role by producing fructose-2,6-biphosphate; the most potent activator of the glycolysis rate-limiting step performed by phosphofructokinase PFK-1. Herein, the synthesis, biological evaluation and structure-activity relationship of novel inhibitors of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which is the ubiquitous and hypoxia-induced isoform of PFK-2, are reported. X-ray crystallography and docking were instrumental in the design and optimisation of a series of N-aryl 6-aminoquinoxalines. The most potent representative, N-(4-methanesulfonylpyridin-3-yl)-8-(3-methyl-1-benzothiophen-5-yl)quinoxalin-6-amine, displayed an IC50 of 14 nm for the target and an IC50 of 0.49 µm for fructose-2,6-biphosphate production in human colon carcinoma HCT116 cells. This work provides a new entry in the field of PFKFB3 inhibitors with potential for development in oncology.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Quinoxalinas/química , Quinoxalinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Células HCT116 , Humanos , Ácido Láctico/antagonistas & inibidores , Ácido Láctico/biossíntese , Modelos Moleculares , Estrutura Molecular , Fosfofrutoquinase-2/metabolismo , Quinoxalinas/síntese química , Relação Estrutura-Atividade
7.
J Clin Invest ; 127(11): 4179-4192, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035277

RESUMO

Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase-interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.


Assuntos
Antineoplásicos/farmacologia , Dasatinibe/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melanoma/enzimologia , Melanoma/secundário , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 8(20): 33779-33795, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28422713

RESUMO

Inhibition of oncogenic transcriptional programs is a promising therapeutic strategy. A substituted tricyclic benzimidazole, SEL120-34A, is a novel inhibitor of Cyclin-dependent kinase 8 (CDK8), which regulates transcription by associating with the Mediator complex. X-ray crystallography has shown SEL120-34A to be a type I inhibitor forming halogen bonds with the protein's hinge region and hydrophobic complementarities within its front pocket. SEL120-34A inhibits phosphorylation of STAT1 S727 and STAT5 S726 in cancer cells in vitro. Consistently, regulation of STATs- and NUP98-HOXA9- dependent transcription has been observed as a dominant mechanism of action in vivo. Treatment with the compound resulted in a differential efficacy on AML cells with elevated STAT5 S726 levels and stem cell characteristics. In contrast, resistant cells were negative for activated STAT5 and revealed lineage commitment. In vivo efficacy in xenotransplanted AML models correlated with significant repression of STAT5 S726. Favorable pharmacokinetics, confirmed safety and in vivo efficacy provide a rationale for the further clinical development of SEL120-34A as a personalized therapeutic approach in AML.


Assuntos
Antineoplásicos/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/química , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Modelos Moleculares , Conformação Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Fator de Transcrição STAT1/química , Fator de Transcrição STAT5/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Curr Med Chem ; 24(28): 3025-3053, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28164761

RESUMO

MAP kinase-interacting kinases (MNK1 and MNK2) are often activated downstream of ERK and p38 MAPK in the MAP kinase family. The role of MNKs in the development and progression of solid tumors and hematological malignancies has been widely discussed, particularly in the context of cap dependent translation, regulated by phosphorylation of eIF4E. MNK/eIF4E axis is involved in the expression of pro angiogenic, antiapoptotic, cell cycle, and motility proteins, such as MCL1, VEGF, MMP3, SNAIL, SMAD2, ß-catenin or cyclin D1, and is essential during Ras and c Myc-induced transformation. MNK1/2 emerged as eligible targets for drug discovery in oncology, based on the antitumor effects observed in genetic knockout and RNA interference experiments and at the same time lack of adverse effects in dual knockout animals. There is a high interest in the development of pharmacological inhibitors of MNK1/2 as not only tools for further basic research studies but also potential drugs in diseases characterized by deregulated translation. Unfortunately, the role of MNK1/2 in cancer still remains elusive due to the absence of potent and selective probes. Moreover, in many instances, hypotheses have been built reliant upon unspecific MNK1/2 inhibitors such as CGP57380 or cercosporamide. Lately, the first two clinical programs targeting MNKs in oncology have been revealed (eFT508 and BAY 1143269), although several other MNK programs are currently running at the preclinical stage. This review aims to provide an overview of recent progress in the development of MNK inhibitors.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA