Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38986455

RESUMO

Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.


Assuntos
Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Infarto do Miocárdio , Neovascularização Fisiológica , Humanos , Animais , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Hidrogéis/química , Neovascularização Fisiológica/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Metacrilatos/química , Gelatina/química , Injeções , Masculino
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108377

RESUMO

Radiological imaging is currently employed as the most effective technique for screening, diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in women worldwide. However, the introduction of the omics sciences such as metabolomics, proteomics, and molecular genomics, have optimized the therapeutic path for patients and implementing novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel to the "omics" clusters, radiological imaging has been gradually employed to generate a specific omics cluster termed "radiomics". Radiomics is a novel advanced approach to imaging, extracting quantitative, and ideally, reproducible data from radiological images using sophisticated mathematical analysis, including disease-specific patterns, that could not be detected by the human eye. Along with radiomics, radiogenomics, defined as the integration of "radiology" and "genomics", is an emerging field exploring the relationship between specific features extracted from radiological images and genetic or molecular traits of a particular disease to construct adequate predictive models. Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over the time. Despite such improvements, we are still far from achieving approved and standardized protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary clinical approach? This minireview provides a focused overview on the significance of radiomics integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such radiomics-based approach.


Assuntos
Neoplasias da Mama , Radiologia , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Radiologia/métodos , Diagnóstico por Imagem , Genômica/métodos , Radiografia
3.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887248

RESUMO

The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-κB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-κB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-κB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC.


Assuntos
NF-kappa B , Neoplasias , Humanos , Macrófagos , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor
4.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
5.
Biomolecules ; 11(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917623

RESUMO

The Cdkn2a locus is one of the most studied tumor suppressor loci in the context of several cancer types. However, in the last years, its expression has also been linked to terminal differentiation and the activation of the senescence program in different cellular subtypes. Knock-out (KO) of the entire locus enhances the capability of stem cells to proliferate in some tissues and respond to severe physiological and non-physiological damages in different organs, including the heart. Emery-Dreifuss muscular dystrophy (EDMD) is characterized by severe contractures and muscle loss at the level of skeletal muscles of the elbows, ankles and neck, and by dilated cardiomyopathy. We have recently demonstrated, using the LMNA Δ8-11 murine model of Emery-Dreifuss muscular dystrophy (EDMD), that dystrophic muscle stem cells prematurely express non-lineage-specific genes early on during postnatal growth, leading to rapid exhaustion of the muscle stem cell pool. Knock-out of the Cdkn2a locus in EDMD dystrophic mice partially restores muscle stem cell properties. In the present study, we describe the cardiac phenotype of the LMNA Δ8-11 mouse model and functionally characterize the effects of KO of the Cdkn2a locus on heart functions and life expectancy.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Animais , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Modelos Animais de Doenças , Loci Gênicos , Genótipo , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Longevidade , Camundongos , Camundongos Knockout , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/mortalidade , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Células-Tronco/citologia , Células-Tronco/metabolismo , Taxa de Sobrevida
6.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33434889

RESUMO

Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.


Assuntos
Bioimpressão , Vesículas Extracelulares , Impressão Tridimensional , Comunicação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Medicina Regenerativa
7.
Oxid Med Cell Longev ; 2017: 2712751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607629

RESUMO

Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed.


Assuntos
Sistema Cardiovascular/metabolismo , Epigênese Genética/genética , Interação Gene-Ambiente , Espécies Reativas de Oxigênio/metabolismo , Humanos , Estresse Oxidativo
8.
Oncotarget ; 6(32): 32821-40, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26439802

RESUMO

Tumor-initiating cells constitute a population within a tumor mass that shares properties with normal stem cells and is considered responsible for therapy failure in many cancers. We have previously demonstrated that knockdown of the nuclear envelope component Lamin A/C in human neuroblastoma cells inhibits retinoic acid-mediated differentiation and results in a more aggressive phenotype. In addition, Lamin A/C is often lost in advanced tumors and changes in the nuclear envelope composition occur during tumor progression. Based on our previous data and considering that Lamin A/C is expressed in differentiated tissues, we hypothesize that the lack of Lamin A/C could predispose cells toward a stem-like phenotype, thus influencing the development of tumor-initiating cells in neuroblastoma. This paper demonstrates that knockdown of Lamin A/C triggers the development of a tumor-initiating cell population with self-renewing features in human neuroblastoma cells. We also demonstrates that the development of TICs is due to an increased expression of MYCN gene and that in neuroblastoma exists an inverse relationship between LMNA and MYCN expression.


Assuntos
Proliferação de Células , Lamina Tipo A/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neuroblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Autorrenovação Celular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Lamina Tipo A/genética , Masculino , Camundongos Nus , Proteína Proto-Oncogênica N-Myc , Células-Tronco Neoplásicas/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fenótipo , Interferência de RNA , Transdução de Sinais , Esferoides Celulares , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA