Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1018272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325556

RESUMO

Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.

2.
CNS Neurosci Ther ; 28(9): 1447-1457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703405

RESUMO

AIMS: Many patients with glioblastoma (GBM) suffer from comorbid neurological/psychiatric disorders and, therefore, are treated with psychopharmacological agents. Diazepam (DIA) is widely adopted to treat status epilepticus, alleviate anxiety, and inhibit chemotherapy-associated delayed emesis in GBM patients. Even though temozolomide (TMZ) and DIA could be found as possible combination therapy in clinical practice, there are no reports of their combined effects in GBM. Hence, it may be of interest to investigate whether DIA enhances the antitumor efficacy of TMZ in GBM cells. METHODS: U87 human GBM was used to examine the effects of combined TMZ and DIA on cell viability, and the oxygen consumption within the cells, in order to evaluate mitochondrial bioenergetic response upon the treatment. RESULTS: The cooperative index showed the presence of antagonism between TMZ and DIA, which was confirmed on long-term observation. Moreover, the level of apoptosis after the TMZ treatment was significantly decreased when administered with DIA (p < 0.001). Concomitant use of TMZ and DIA increased the basal cell respiration rate, the oxidative phosphorylation rate, and maximal capacity of mitochondrial electron transport chain, as well as the activities of complexes I and II, vs. TMZ alone (p < 0.001). CONCLUSION: Comparing our results with data reported that DIA elicits cell cycle arrest in the G0/G1 phase and favors senescence reveals that DIA diminishes TMZ efficacy in concomitant use in the treatment of GBM. However, due to its great potency to hinder GBM proliferation and metabolism, it could be considered using DIA as maintenance therapy after TMZ cycles.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Diazepam/farmacologia , Diazepam/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Neurosci Bull ; 36(11): 1285-1298, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33040238

RESUMO

Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.


Assuntos
Trifosfato de Adenosina , Vias Auditivas , Receptores Purinérgicos P2X/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Cóclea , Células Ciliadas Auditivas Internas , Gânglio Espiral da Cóclea
5.
J Clin Neurosci ; 72: 31-38, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31959558

RESUMO

ATP1A3 related disease is a clinically heterogeneous condition currently classified as alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss. Recently, it has become apparent that a remarkably large subgroup is suffering from often difficult-to-treat epilepsy. The aim of the present study was to assess the prevalence and efficacy of commonly used anti-epileptic-drugs (AEDs) in patients with ATP1A3 related seizures. Therefore, we performed a retrospective study of patients in combination with a systematic literature-based review. Inclusion criteria were: verified ATP1A3 mutation, seizures and information about AED treatment. The literature review yielded records for 188 epileptic ATP1A3 patients. For 14/188 cases, information about anti-epileptic treatment was available. Combined with seven unpublished records of ATP1A3 patients, a sample size of 21 patients was reached. Most used AED were levetiracetam (n = 9), phenobarbital (n = 8), valproic acid (n = 7), and topiramate (n = 5). Seizure reduction was reported for 57% of patients (n = 12). No individual AEDs used (either alone or combined) had a success rate over 50%. There was no significant difference in the response rate between various AEDs. Ketogenic diet was effective in 2/4 patients. 43% of patients (n = 9) did not show any seizure relief. Even though Epilepsy is a significant clinical issue in ATP1A3 patients, only a minority of publications provide any information about patients' anti-epileptic treatment. The findings of treatment effectiveness in only 57% (or lower) of patients, and the non-existence of a clear first-line AED in ATP1A3 related epilepsy stresses the need for further research.


Assuntos
Epilepsia/genética , Hemiplegia/genética , ATPase Trocadora de Sódio-Potássio , Adulto , Anticonvulsivantes/uso terapêutico , Ataxia Cerebelar/genética , Criança , Distúrbios Distônicos , Epilepsia/dietoterapia , Epilepsia/tratamento farmacológico , Feminino , Perda Auditiva Neurossensorial , Hemiplegia/dietoterapia , Hemiplegia/tratamento farmacológico , Humanos , Levetiracetam , Masculino , Mutação , Atrofia Óptica/genética , Reflexo Anormal , Estudos Retrospectivos , Convulsões/genética , Topiramato , Ácido Valproico/uso terapêutico
6.
Brain Struct Funct ; 223(3): 1501-1518, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29168008

RESUMO

The function, regulation and cellular distribution of GABAA receptor subunits have been extensively documented in the adult rodent brain and are linked to numerous neurological disorders. However, there is a surprising lack of knowledge on the cellular (sub-) distribution of GABAA receptor subunits and of their expressional regulation in developing healthy and diseased foetal human brains. To propose a role for GABAA receptor subunits in neurodevelopmental disorders, we studied the developing hippocampus of normal and Down syndrome foetuses. Among the α1-3 and γ2 subunits probed, we find significantly altered expression profiles of the α1, α3 and γ2 subunits in developing Down syndrome hippocampi, with the α3 subunit being most affected. α3 subunits were selectively down-regulated in all hippocampal subfields and developmental periods tested in Down syndrome foetuses, presenting a developmental mismatch by their adult-like distribution in early foetal development. We hypothesized that increased levels of the amyloid precursor protein (APP), and particularly its neurotoxic ß-amyloid (1-42) fragment, could disrupt α3 gene expression, likely by facilitating premature neuronal differentiation. Indeed, we find increased APP content in the hippocampi of the Down foetuses. In a corresponding cellular model, soluble ß-amyloid (1-42) administered to cultured SH-SY5Y neuroblastoma cells, augmented by retinoic acid-induced differentiation towards a neuronal phenotype, displayed a reduction in α3 subunit levels. In sum, this study charts a comprehensive regional and subcellular map of key GABAA receptor subunits in identified neuronal populations in the hippocampus of healthy and Down syndrome foetuses and associates increased ß-amyloid load with discordant down-regulation of α3 subunits.


Assuntos
Síndrome de Down/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Adolescente , Adulto , Fatores Etários , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Estudos de Casos e Controles , Proteínas do Domínio Duplacortina , Síndrome de Down/genética , Embrião de Mamíferos , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Idade Gestacional , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fragmentos de Peptídeos/farmacologia , Subunidades Proteicas/genética , Tretinoína/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Adulto Jovem
7.
J Physiol ; 595(4): 1315-1337, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28030754

RESUMO

KEY POINTS: Following the genetically controlled formation of neuronal circuits, early firing activity guides the development of sensory maps in the auditory, visual and somatosensory system. However, it is not clear whether the activity of central auditory neurons is specifically regulated depending on the position within the sensory map. In the ventral cochlear nucleus, the first central station along the auditory pathway, we describe a mechanism through which paracrine ATP signalling enhances firing in a cell-specific and tonotopically-determined manner. Developmental down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, suggesting a high-to-low frequency maturation pattern. Facilitated action potential (AP) generation, measured as higher firing rate, shorter EPSP-AP delay in vivo and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. The long lasting change in intrinsic neuronal excitability is mediated by the heteromeric P2X2/3 receptors. ABSTRACT: Synaptic refinement and strengthening are activity-dependent processes that establish orderly arranged cochleotopic maps throughout the central auditory system. The maturation of auditory brainstem circuits is guided by action potentials (APs) arising from the inner hair cells in the developing cochlea. The AP firing of developing central auditory neurons can be modulated by paracrine ATP signalling, as shown for the cochlear nucleus bushy cells and principal neurons in the medial nucleus of the trapezoid body. However, it is not clear whether neuronal activity may be specifically regulated with respect to the nuclear tonotopic position (i.e. sound frequency selectivity). Using slice recordings before hearing onset and in vivo recordings with iontophoretic drug applications after hearing onset, we show that cell-specific purinergic modulation follows a precise tonotopic pattern in the ventral cochlear nucleus of developing gerbils. In high-frequency regions, ATP responsiveness diminished before hearing onset. In low-to-mid frequency regions, ATP modulation persisted after hearing onset in a subset of low-frequency bushy cells (characteristic frequency< 10 kHz). Down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, thus suggesting a high-to-low frequency maturation pattern. Facilitated AP generation, measured as higher firing frequency, shorter EPSP-AP delay in vivo, and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. Finally, by combining recordings and pharmacology in vivo, in slices, and in human embryonic kidney 293 cells, it was shown that the long lasting change in intrinsic neuronal excitability is mediated by the P2X2/3R.


Assuntos
Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Núcleo Coclear/metabolismo , Potenciais Pós-Sinápticos Excitadores , Receptores Purinérgicos/metabolismo , Animais , Nervo Coclear/metabolismo , Nervo Coclear/fisiologia , Núcleo Coclear/citologia , Núcleo Coclear/crescimento & desenvolvimento , Núcleo Coclear/fisiologia , Feminino , Gerbillinae , Células HEK293 , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Humanos , Masculino , Tempo de Reação , Receptores de AMPA/metabolismo
8.
PLoS One ; 10(2): e0118372, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695433

RESUMO

Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and enhancing anti-inflammatory factor production in activated microglia.


Assuntos
Anti-Inflamatórios/farmacologia , Tiamina/análogos & derivados , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiamina/farmacologia
9.
J Neurosurg Pediatr ; 14(5): 546-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25192236

RESUMO

The congenital disorder of glycosylation characterized by a deficiency of phosphomannomutase 2 (PMM2-CDG) is the most common variant of congenital disorders of glycosylation. Besides typical clinical features, such as dysmorphism and abnormal body fat distribution, coagulation abnormities often lead to thromboembolic and hemorrhagic events in these patients. However, only 2 cases of intracerebral bleeding in patients with PMM2-CDG have been described so far. A 4-year-old girl who initially presented with symptoms resulting from raised intracranial pressure underwent acute neurosurgical intervention for intracranial hemorrhage. The differential diagnoses after MRI included arteriovenous malformation and intraparenchymal brain tumor. However, clinical investigations promoted the diagnosis of PMM2-CDG, which was supported further by neuropathological findings and finally confirmed by isoelectric focusing and mutational analysis. No major complications or neurological deficits were evident after surgery, and the patient was able to attend an integrated kindergarten. Unexplained intracranial hemorrhage should raise suspicion of a metabolic disorder and should be discussed with specialists to rule out an orphan disease such as PMM2-CDG.


Assuntos
Hemorragia Cerebral/cirurgia , Defeitos Congênitos da Glicosilação/diagnóstico , Procedimentos Neurocirúrgicos , Fosfotransferases (Fosfomutases)/deficiência , Pré-Escolar , Análise Mutacional de DNA , Feminino , Glicosilação , Humanos , Imageamento por Ressonância Magnética
10.
Int J Dev Neurosci ; 31(8): 796-803, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113258

RESUMO

Down syndrome (DS), the most common genetic cause of mental retardation, is characterized by reduced number of neurons and delayed myelination. Though non-neuronal cells in the brain are vital for the development, survival, and function of neurons, there is a paucity of comparative studies of normal development and DS, in particular in the temporal lobe, a region of interest for cognitive decline. We evaluated immunoreactivity for CD68 (macrophage), HLA-DR (microglia), Olig2 and TPPP/p25 (oligodendroglia), and GFAP (astroglia) in the germinal matrix (GM), temporal lobe white matter (TeWM) and hippocampus from 14 weeks of gestations to newborn in 28 DS patients and 30 age-matched controls. The rate of increase of CD68 positive cells in the GM, CA1 hippocampal subregion and subiculum was significantly higher in DS. The density of Olig2 positive cells in the GM was lower in DS brains at early stages, then showed a transient increase contrasting controls. Olig2 expression increased more in the TeWM in DS, suggesting an altered pattern of oligodendrocyte progenitor generation. GFAP-immunoreactivity in DS was significantly lower in the middle pregnancy period in the TeWM and did not increase between early and middle periods in the GM compared to controls, likely reflecting a defect in astrocyte production. The altered expression of non-neuronal cell markers during normal development and DS may play a role in, or reflect, defective neurogenesis, leading to reduced number of neurons and delayed myelination in the developing DS brain. This has implications for the understanding of the mental retardation in DS patients.


Assuntos
Encéfalo , Síndrome de Down/patologia , Macrófagos/metabolismo , Neuroglia/patologia , Análise de Variância , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Contagem de Células , Homólogo 5 da Proteína Cromobox , Feminino , Feto , Proteína Glial Fibrilar Ácida , Antígenos HLA-DR , Humanos , Masculino , Proteínas do Tecido Nervoso , Neuroglia/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Gravidez
11.
Acta Neuropathol ; 126(3): 365-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23900711

RESUMO

Neurodegenerative diseases are characterised by neuronal loss and cerebral deposition of proteins with altered physicochemical properties. The major proteins are amyloid-ß (Aß), tau, α-synuclein, and TDP-43. Although neuropathological studies on elderly individuals have emphasised the importance of mixed pathologies, there have been few observations on the full spectrum of proteinopathies in the ageing brain. During a community-based study we performed comprehensive mapping of neurodegeneration-related proteins and vascular pathology in the brains of 233 individuals (age at death 77-87; 73 examined clinically in detail). While all brains (from individuals with and without dementia) showed some degree of neurofibrillary degeneration, Aß deposits were observed only in 160 (68.7 %). Further pathologies included α-synucleinopathies (24.9 %), non-Alzheimer tauopathies (23.2 %; including novel forms), TDP-43 proteinopathy (13.3 %), vascular lesions (48.9 %), and others (15.1 %; inflammation, metabolic encephalopathy, and tumours). TDP-43 proteinopathy correlated with hippocampal sclerosis (p < 0.001) and Alzheimer-related pathology (CERAD score and Braak and Braak stages, p = 0.001). The presence of one specific variable (cerebral amyloid angiopathy, Aß parenchymal deposits, TDP-43 proteinopathy, α-synucleinopathy, vascular lesions, non-Alzheimer type tauopathy) did not increase the probability of the co-occurrence of others (p = 0.24). The number of observed pathologies correlated with AD-neuropathologic change (p < 0.0001). In addition to AD-neuropathologic change, tauopathies associated well with dementia, while TDP-43 pathology and α-synucleinopathy showed strong effects but lost significance when evaluated together with AD-neuropathologic change. Non-AD neurodegenerative pathologies and their combinations have been underestimated, but are frequent in reality as demonstrated here. This should be considered in diagnostic evaluation of biomarkers, and for better clinical stratification of patients.


Assuntos
Encéfalo/patologia , Placa Amiloide/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autopsia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
12.
J Neurosci ; 32(31): 10699-712, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855818

RESUMO

In the developing nervous system, spontaneous neuronal activity arises independently of experience or any environmental input. This activity may play a major role in axonal pathfinding, refinement of topographic maps, dendritic morphogenesis, and the segregation of axonal terminal arbors. In the auditory system, endogenously released ATP in the cochlea activates inner hair cells to trigger bursts of action potentials (APs), which are transferred to the central auditory system. Here we show the modulatory role of purinergic signaling beyond the cochlea, i.e., the developmentally regulated and cell-type-specific depolarizing effects on auditory brainstem neurons of Mongolian gerbil. We assessed the effects of P2X receptors (P2XRs) on neuronal excitability from prehearing to early stages of auditory signal processing. Our results demonstrate that in neurons expressing P2XRs, extracellular ATP can evoke APs in sync with Ca(2+) signals. In cochlear nucleus (CN) bushy cells, ATP increases spontaneous and also acoustically evoked activity in vivo, but these effects diminish with maturity. Moreover, ATP not only augmented glutamate-driven firing, but it also evoked APs in the absence of glutamatergic transmission. In vivo recordings also revealed that endogenously released ATP in the CN contributes to neuronal firing activity by facilitating AP generation and prolonging AP duration. Given the enhancing effect of ATP on AP firing and confinement of P2XRs to certain auditory brainstem nuclei, and to distinct neurons within these nuclei, it is conceivable that purinergic signaling plays a specific role in the development of neuronal brainstem circuits.


Assuntos
Potenciais de Ação/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Receptores Purinérgicos P2X/metabolismo , Células Receptoras Sensoriais/fisiologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Gerbillinae , Glicina/farmacologia , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Masculino , Técnicas de Patch-Clamp , Psicoacústica , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estilbamidinas/metabolismo , Potenciais Sinápticos/efeitos dos fármacos
13.
Front Mol Neurosci ; 5: 84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888312

RESUMO

Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer's disease. The expression pattern of Secretagogin is not conserved from rodents to humans. We used brain tissue and primary neuronal cell cultures from rat to further characterize this CBP in rodents and to perform a few functional assays in vitro. Immunohistochemistry on rat brain slices revealed a high density of Secretagogin-positive cells in distinct brain regions. Secretagogin was found in the cytosol or associated with subcellular compartments. We tested primary neuronal cultures for their suitability as model systems to further investigate functional properties of Secretagogin. These cultures can easily be manipulated by treatment with drugs or by transfection with test constructs interfering with signaling cascades that might be linked to the cellular function of Secretagogin. We show that, like in pancreatic beta cells and insulinoma cell lines, also in neurons the expression level of Secretagogin is dependent on extracellular insulin and glucose. Further, we show also for rat brain neuronal tissue that Secretagogin interacts with the microtubule-associated protein Tau and that this interaction is dependent on Ca(2+). Future studies should aim to study in further detail the molecular properties and function of Secretagogin in individual neuronal cell types, in particular the subcellular localization and trafficking of this protein and a possible active secretion by neurons.

14.
J Neurophysiol ; 102(3): 1821-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19571200

RESUMO

Purinoreceptors of the P2 family contribute strongly to signaling in the cochlea, but little is known about the effects of purinergic neurotransmission in the central auditory system. Here we examine P2 receptor-mediated signaling in the large spherical bushy cells (SBCs) of Mongolian gerbils around the onset of acoustically evoked signal processing (P9-P14). Brief adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) application evoked inward current, membrane depolarization, and somatic Ca2+ signals. Moreover, ATPgammaS changed the SBCs firing pattern from phasic to tonic, when the application was synchronized with depolarizing current injection. This bursting discharge activity was dependent on [Ca2+]i and Ca2+-dependent protein kinase (PKC) activity and is presumably caused by modulation of low-threshold K+ conductance. Activation of P2Y1 receptors could not evoke these changes per se, thus it was concluded that the involvement of P2X receptors seems to be necessary. Ca2+ imaging data showed that both P2X and P2Y1 receptors mediate Ca2+ signals in SBCs where P2Y1 receptors most likely activate the PLC-IP3 (inositol trisphosphate) pathway and release Ca2+ from internal stores. Immunohistochemical staining confirmed the expression of P2X2 and P2Y1 receptor proteins in SBCs, providing additional evidence for the involvement of both receptors in signal transduction in these neurons. Purinergic signaling might modulate excitability of SBCs and thereby contribute to regulation of synaptic strength. Functionally, the increase in firing rate mediated by P2 receptors could reduce temporal precision of the postsynaptic firing, e.g., phase locking, which has an immediate effect on signal processing related to sound localization. This might provide a mechanism for adaptation to the ambient acoustic environment.


Assuntos
Núcleo Coclear/citologia , Neurônios/fisiologia , Receptores Purinérgicos P2/fisiologia , Transdução de Sinais/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Biofísica , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Fluorometria/métodos , Fura-2/análogos & derivados , Fura-2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gerbillinae , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
15.
Graefes Arch Clin Exp Ophthalmol ; 243(8): 811-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15834609

RESUMO

BACKGROUND: Activation of the receptor for alpha2-macroglobulin (alpha2 M), the low-density lipoprotein-related protein (LRP1; CD91), has been suggested to represent a possible strategy for the inhibition of uncontrolled retinal cell proliferation via stimulation of the clearance of alpha2 M-bound growth factors and proteinases from the extracellular space. In order to prove this assumption, we investigated the effect of alpha2 M on the proliferation of Müller glial cells in vitro. METHODS: Proliferation assays using bromodeoxyuridine were carried out on cultured Müller glial cells of the guinea pig in the absence and presence of alpha2 M. RESULTS: Activated alpha2 M evoked a slight increase of the cell proliferation at control conditions. Addition of alpha2 M to the culture medium inhibited the proliferation evoked by agonists of G-protein-coupled receptors [adenosine 5'-triphosphate (ATP), neuropeptide Y]. However, alpha2 M did not diminish the proliferation evoked by agonists of receptor tyrosine kinases (epidermal and platelet-derived growth factors) and by serum, respectively. Inhibition of LRP1 by a neutralizing antibody did not alter the ATP-evoked proliferation while it increased the proliferation in the presence of alpha2 M. CONCLUSION: It is concluded that alpha2 M inhibits the proliferation evoked by agonists of G-protein-coupled receptors, possibly via enhanced growth factor clearance by LRP.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neuroglia/citologia , Retina/citologia , alfa-Macroglobulinas/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Bromodesoxiuridina , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Cobaias , Masculino , Neuropeptídeo Y/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/agonistas
16.
J Neuroimmunol ; 161(1-2): 49-60, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15748943

RESUMO

Interleukin 8 (IL-8, CXCL8) is a pro-inflammatory chemokine which attracts neutrophils to sites of inflammation via an activation of the G-protein-coupled receptors, CXCR1 and CXCR2. However, both IL-8 and IL-8 receptors are widely expressed in various tissues and cell types, and have been suggested to be involved in other functions such as angiogenesis, tumor growth, or brain pathology. We examined the expression of IL-8 and IL-8 receptors in highly enriched primary cultures of guinea pig Muller glial cells. Immunoreactivity for CXCL8, CXCR1 and CXCR2 was observed in all cultured Muller cells. The expression of CXCL8 was confirmed by PCR, and the secretion of the CXCL8 protein from Muller cells was revealed by ELISA. Western blots showed prominent bands at approximately 40 kDa by using antibodies specific for human CXCR1 and CXCR2, and the expression of a putative CXCR2 receptor in Muller cells was confirmed by PCR. Furthermore, cultured Muller cells responded to application of recombinant human IL-8 with an increase of the cytosolic Ca(2+) concentration. If supernatants of cultured human retinal pigment epithelium (RPE) cells were applied to the Muller cell cultures, no obvious changes were observed in the CXCL8, CXCR1 and CXCR2 expression but (i) Muller cell proliferation was stimulated, and (ii) there was an increased number of CXCL8-responsive Muller cells and the amplitudes of the evoked calcium responses were enhanced. It is concluded that Muller glial cells may participate in the inflammatory response(s) of the retina during ocular diseases, and that this contribution may be modified by interactions with RPE cells.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neuroglia/metabolismo , Epitélio Pigmentado Ocular/fisiologia , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Retina/citologia , Trifosfato de Adenosina/farmacologia , Animais , Northern Blotting/métodos , Western Blotting/métodos , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Contagem de Células/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Diagnóstico por Imagem/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Cobaias , Humanos , Imuno-Histoquímica/métodos , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Rim/metabolismo , Fatores de Crescimento Neural , Neuroglia/efeitos dos fármacos , Epitélio Pigmentado Ocular/efeitos dos fármacos , RNA Mensageiro/biossíntese , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Fatores de Tempo , Vimentina/metabolismo
17.
Graefes Arch Clin Exp Ophthalmol ; 242(11): 944-50, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15293057

RESUMO

BACKGROUND: Glial cells in human retinas and in fibrocellular membranes from patients with proliferative vitreoretinopathy (PVR) have been described to upregulate their expression of Y1 receptors for neuropeptide Y (NPY) (Soler et al.: Glia 39:320, 2002). However, it is unknown whether Y1 receptor activation causes proliferation of retinal glial cells. We investigated whether NPY exerts a proliferation-stimulating effect on retinal glial cells, and compared the NPY-evoked signaling with the signaling of purinergic P2Y receptors. METHODS: Proliferation assays using bromodeoxyuridine were carried out on primarily cultured Muller glial cells of the guinea pig, in the absence and presence of blockers of Y1 receptors, of receptor tyrosine kinases (RTKs), of mitogen-activated protein kinases (MAPKs) and of phosphatidylinositol-3 kinase (PI3K). RESULTS: NPY exerted a biphasic effect on Muller cell proliferation. At low concentrations (0.1 ng/ml and 1 ng/ml) it decreased the proliferation rate of the cells, while at higher concentration (100 ng/ml) it increased Muller cell proliferation. The NPY-evoked proliferation was mediated by Y1 receptor stimulation and by activation of the p44/p42 MAPKs and partially of the p38 MAPK. Moreover, Y1 receptor-induced activation of PI3K as well as transactivations of the platelet-derived and the epidermal growth factor RTKs were necessary for full mitogenic effect of NPY. Y1 and P2Y receptors share partially common signal transduction pathways in Muller cells. CONCLUSION: It is suggested that NPY may be involved in stimulation of retinal glial cell proliferation during PVR when it is released at higher amounts into the injured retina.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neuroglia/citologia , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Retina/citologia , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , DNA/biossíntese , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/metabolismo , Cobaias , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Purinérgicos P2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Invest Ophthalmol Vis Sci ; 44(3): 1211-20, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12601051

RESUMO

PURPOSE: To determine whether P2Y receptor-evoked proliferation of Müller glial cells depends on transactivation of receptor tyrosine kinases. METHODS: Primary cultures of Müller cells of the guinea pig were treated with test substances for 16 hours. The DNA synthesis rate was assessed by a bromodeoxyuridine (BrdU) immunoassay, and the phosphorylation states of the extracellular signal-regulated kinase (ERK1/2) and the p38 mitogen-activated protein kinase (p38 MAPK) were determined by Western blot analysis. RESULTS: In Müller cells, the mitogenic effect of P2Y receptor activation by extracellular adenosine triphosphate (ATP) depended on transactivation of both the platelet-derived growth factor (PDGF) and the epidermal growth factor (EGF) receptor tyrosine kinases, as suggested by the blocking effects of the tyrphostins AG1296 and AG1478 on the ATP-induced proliferation and phosphorylation of ERK1/2. Moreover, the PDGF-induced proliferation may depend on transactivation of the EGF receptor kinase. Antibodies against heparin-binding EGF (HB-EGF) or PDGF, as well as inhibition of matrix metalloproteinases (MMPs) blocked ATP-evoked proliferation. At least one metalloproteinase (MMP-9), was implicated in the signal transfer from P2Y to EGF receptors. In contrast, the mitogenic effect of fetal calf serum was independent of growth factor receptor activity. P2Y receptor activation stimulated Müller cell proliferation by activating the ERK1/2 and the phosphatidylinositol 3 (PI3) kinase signaling pathways, whereas the p38 MAPK pathway was not involved in mitogenic signaling. CONCLUSIONS: The present data suggest that P2Y-receptor-induced mitogenic signaling in Müller cells is mediated by transactivation of the PDGF and EGF receptor tyrosine kinases. The transactivation may be mediated by release of PDGF and MMP-dependent shedding of HB-EGF from the Müller cell matrix, respectively. The transactivation of the receptor tyrosine kinases may result in activation of ERK1/2 and PI3 kinase and an increase in the proliferation rate.


Assuntos
Trifosfato de Adenosina/farmacologia , DNA/biossíntese , Receptores ErbB/metabolismo , Neuroglia/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Divisão Celular , Células Cultivadas , Replicação do DNA , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , Cobaias , Inibidores de Metaloproteinases de Matriz , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroglia/metabolismo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Quinazolinas , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Tirfostinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
19.
Invest Ophthalmol Vis Sci ; 43(3): 766-73, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11867596

RESUMO

PURPOSE: To determine whether activation of P2Y receptors may increase the DNA synthesis rate of cultured Müller cells and to investigate whether adenosine 5'-triphosphate (ATP)-induced Müller cell proliferation is mediated by an intracellular calcium increase. METHODS: Primary cultures of Müller cells of the guinea pig were treated with test substances for 16 hours. The DNA synthesis rate was assessed by a bromodeoxyuridine immunoassay, and ATP-induced elevations of the intracellular calcium concentration were recorded by fura-2 imaging. RESULTS: ATP or uridine triphosphate (UTP) increased the DNA synthesis rate whereas alpha,beta-methylene-ATP, 2-methyl-thio-ATP, and adenosine were ineffective, indicating that the action of ATP was through P2Y receptors. The effect of ATP was dose dependent, with an EC(50) of 5.9 microM. The mitogenic effect of ATP required an elevation of the intracellular calcium and a calcium influx into Müller cells. Blockers of calcium-permeable channels (nickel ions) or of calcium-dependent potassium (BK) channels (iberiotoxin, charybdotoxin) inhibited the ATP-stimulated DNA synthesis. In calcium-imaging experiments, ATP-evoked intracellular calcium transients were significantly shortened in the presence of extracellular nickel ions or of iberiotoxin. A correlation was found between the duration of the ATP-evoked calcium transients and the basal proliferation rate of the cultures. CONCLUSIONS: The results indicate that the ATP-induced elevation of Müller glial DNA synthesis is dependent on an influx of calcium ions from the extracellular space and that the inhibiting effect of BK channel blockers on ATP-evoked DNA synthesis is caused by an inhibition of this influx. The amount of the calcium influx seems to be directly correlated to the strength of the ATP-evoked proliferation.


Assuntos
DNA/biossíntese , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fura-2 , Cobaias , Neuroglia/efeitos dos fármacos , Uridina Trifosfato/farmacologia
20.
Invest Ophthalmol Vis Sci ; 43(3): 870-81, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11867610

RESUMO

PURPOSE: To test whether in an animal model of proliferative vitreoretinopathy (PVR) the Müller glial cells displayed an upregulation of purinergic P2 receptor-mediated responses. METHODS: PVR was induced by intravitreal injection of the proteolytic enzyme, dispase, in the eyes of adult rabbits. The developing PVR was examined ophthalmoscopically. After 3 weeks, small retinal pieces were wholemounted and used for calcium imaging, freshly dissociated Müller cells were subjected to calcium imaging, and patch-clamp recordings were made. The presence of P2 receptor-mediated Ca(2+) responses was determined both directly--that is, fluorometrically--and indirectly, by electrophysiological recording of Ca(2+)-activated K(+) currents. RESULTS: According to earlier observations in another model of retinal detachment and PVR, the reactive Müller cells displayed hypertrophy, downregulation of inwardly rectifying K(+) currents, and depolarization of the resting membrane potential, all dependent on the severity of the PVR. Further, significant PVR-induced increase was observed in the number of Müller cells responding to adenosine 5'-triphosphate (ATP), with a transient elevation of their [Ca(2+)](i). If isolated Müller cells were exposed to ATP, 13% of the control cells, but 29% (moderate PVR) or 53% (massive PVR) of the reactive cells, showed fluorometric Ca(2+) increases. An increase of Ca(2+)-activated K(+) currents was measured in 11% of the control cells, but in 83% (moderate PVR) and 90% (massive PVR) of the reactive cells. Confocal images of retinal wholemounts revealed similar results. Because similar responses were elicited by uridine triphosphate (UTP), the dominant involvement of metabotropic (P2Y type) purinergic receptors is suggested. CONCLUSIONS: An upregulation of purinergic receptors is part of the reactive changes of Müller cells during PVR. It is suggested that ATP-evoked Ca(2+) responses may support the proliferation of Müller cells during PVR.


Assuntos
Trifosfato de Adenosina/farmacologia , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , Compostos de Anilina/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Endopeptidases , Feminino , Hipertrofia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Masculino , Potenciais da Membrana , Microscopia Confocal , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/metabolismo , Coelhos , Regulação para Cima , Vitreorretinopatia Proliferativa/induzido quimicamente , Vitreorretinopatia Proliferativa/patologia , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA