Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172608, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38653421

RESUMO

The effect of the lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) mixture (MIX) on hematotoxicity development was investigated trough combined approach. In vivo subacute study (28 days) was performed on rats (5 per group): a control group and five groups orally exposed to increasing metal(loid) mixture doses, MIX 1- MIX 5 (mg/kg bw./day) (Pb: 0.003, 0.01, 0.1, 0.3, 1; Cd: 0.01, 0.03, 0.3, 0.9, 3; Hg: 0.0002, 0.0006, 0.006, 0.018, 0.06; As: 0.002, 0.006, 0.06, 0.18, 0.6). Blood was taken for analysis of hematological parameters and serum iron (Fe) analysis. MIX treatment increased thrombocyte/platelet count and MCHC and decreased Hb, HCT, MCV and MCH values compared to control, indicating the development of anemia and thrombocytosis. BMDIs with the narrowest width were identified for MCH [pg] (6.030E-03 - 1.287E-01 mg Pb/kg bw./day; 2.010E-02 - 4.290E-01 mg Cd/kg bw./day; 4.020E-04 - 8.580E-03 mg Hg/kg bw./day; 4.020E-03 - 8.580E-02 mg As/kg bw./day). In silico analysis showed target genes connected with MIX and the development of: anemia - ACHE, GSR, PARP1, TNF; thrombocytosis - JAK2, CALR, MPL, THPO; hematological diseases - FAS and ALAD. The main extracted pathways for anemia were related to apoptosis and oxidative stress; for thrombocytosis were signaling pathways of Jak-STAT and TPO. Changes in miRNAs and transcription factors enabled the mode of action (MoA) development based on the obtained results, contributing to mechanistic understanding and hematological risk related to MIX exposure.


Assuntos
Arsênio , Cádmio , Chumbo , Mercúrio , Animais , Ratos , Chumbo/toxicidade , Cádmio/toxicidade , Mercúrio/toxicidade , Arsênio/toxicidade , Simulação por Computador , Masculino , Poluentes Ambientais/toxicidade
2.
Biomed Pharmacother ; 160: 114316, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731342

RESUMO

Sulforaphane (SFN) is a naturally occurring molecule present in plants from Brassica family. It becomes bioactive after hydrolytic reaction mediated by myrosinase or human gastrointestinal microbiota. Sulforaphane gained scientific popularity due to its antioxidant and anti-cancer properties. However, its toxicity profile and potential to cause adverse effects remain largely unidentified. Thus, this study aimed to generate SFN-triggered adverse outcome pathway (AOP) by looking at the relationship between SFN-chemical structure and its toxicity, as well as SFN-gene interactions. Quantitative structure-activity relationship (QSAR) analysis identified 2 toxophores (Derek Nexus software) that have the potential to cause chromosomal damage and skin sensitization in mammals or mutagenicity in bacteria. Data extracted from Comparative Toxicogenomics Database (CTD) linked SFN with previously proposed outcomes via gene interactions. The total of 11 and 146 genes connected SFN with chromosomal damage and skin diseases, respectively. However, network analysis (NetworkAnalyst tool) revealed that these genes function in wider networks containing 490 and 1986 nodes, respectively. The over-representation analysis (ExpressAnalyst tool) pointed out crucial biological pathways regulated by SFN-interfering genes. These pathways are uploaded to AOP-helpFinder tool which found the 2321 connections between 19 enriched pathways and SFN which were further considered as key events. Two major, interconnected AOPs were generated: first starting from disruption of biological pathways involved in cell cycle and cell proliferation leading to increased apoptosis, and the second one connecting activated immune system signaling pathways to inflammation and apoptosis. In both cases, chromosomal damage and/or skin diseases such as dermatitis or psoriasis appear as adverse outcomes.


Assuntos
Rotas de Resultados Adversos , Animais , Humanos , Isotiocianatos/farmacologia , Sulfóxidos , Transdução de Sinais , Apoptose , Mamíferos
3.
Artigo em Inglês | MEDLINE | ID: mdl-36345249

RESUMO

Cadmium (Cd) is a toxic metal, present in all matrices of the environment and a common food contaminant. Human exposure to it may elicit many diverse health impairments. The aim of this study was to assess the dietary exposure to Cd for the adult population and preschool children in Serbia using probabilistic methodology. We measured Cd in 11,227 food samples belonging to 50 food items on the Serbian market. Cd was detected in 90% of the tested food items, and in 30.8% of the overall tested samples. The food item that contributed the most to total dietary Cd intake was potatoes (median Cd concentration of 7 ng/g) in adults, and fruit and vegetable juices in children (median Cd concentration of 19 ng/g). Weekly Cd intake shown as 50th and 95th percentiles were 2.54 and 4.74 µg/kg bw in the adult population, and 3.29 and 4.93 µg/kg bw in children. The results of this study are rather preliminary and should be considered as an indication of the need for further, more refined research, which would contribute to a more realistic risk assessment as a high-priority approach, especially in the case of vulnerable subpopulations such as children. Abbreviations: AT SDR: Agency for Toxic Substances and Disease Registry; EEA: European Environment Agency; EFSA: European Food Safety Authority; FAO/WHO: Food and Agriculture Organization/World Health Organization; HI: hazard index; IARC: International Agency for Research on Cancer; JECFA: Joint FAO/WHO Expert Committee on Food Additives; LOD: limit of detection; Cd: cadmium; TWI: tolerable weekly intake; UNEP: United Nations Environment Program; WI: weekly intake.


Assuntos
Cádmio , Exposição Dietética , Humanos , Adulto , Pré-Escolar , Criança , Cádmio/análise , Sérvia , Contaminação de Alimentos/análise , Frutas/química , Medição de Risco
4.
Arh Hig Rada Toksikol ; 73(2): 119-125, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35792766

RESUMO

Considering that some researchers point to a possible influence of air pollution on COVID-19 transmission, severity, and death rate, the aim of our in silico study was to determine the relationship between the key air pollutants [sulphur dioxide (SO), carbon monoxide (CO), 2particulate matter (PMx), nitrogen dioxide (NO2), and ozone (O3)] and COVID-19 complications using the publicly available toxicogenomic analytical and prediction tools: (i) Comparative Toxicogenomic Database (CTD) to identify genes common to air pollutants and COVID-19 complications; (ii) GeneMANIA to construct a network of these common and related genes; (iii) ToppGene Suite to extract the most important biological processes and molecular pathways; and (iv) DisGeNET to search for the top gene-disease pairs. SO2, CO, PMx, NO2, and O3 interacted with 6, 6, 18, 9, and 12 COVID-19-related genes, respectively. Four of these are common for all pollutants (IL10, IL6, IL1B, and TNF) and participate in most (77.64 %) physical interactions. Further analysis pointed to cytokine binding and cytokine-mediated signalling pathway as the most important molecular function and biological process, respectively. Other molecular functions and biological processes are mostly related to cytokine activity and inflammation, which might be connected to the cytokine storm and resulting COVID-19 complications. The final step singled out the link between the CEBPA gene and acute myelocytic leukaemia and between TNFRSF1A and TNF receptor-associated periodic fever syndrome. This indicates possible complications in COVID-19 patients suffering from these diseases, especially those living in urban areas with poor air quality.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Citocinas , Análise de Dados , Humanos , Dióxido de Nitrogênio/toxicidade , Toxicogenética
5.
Biomed Pharmacother ; 146: 112598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959120

RESUMO

Colorectal cancer (CRC) is a significant global health burden that ranks as the third most diagnosed and second most common cause of cancer related deaths worldwide. New therapeutic strategies include chemoprevention and use of molecules which could prevent, suppress or reverse CRC progression such as sulforaphane (SFN). However, evidences about its safety in CRC patients are still lacking. The aim of this in silico investigation was to predict SFN-induced adverse effects in CRC patients by computational analysis. The study showed that 334 genes were consistently dysregulated in CRC (223 downregulated and 111 upregulated), while 38 were recognized as significant and might be used as predictive biomarkers for overall survival and metastasis (TCGA, GEO, R studio). Among them, SFN interacted with 86 genes, out of which 11 were marked as significant (correlate with overall prognosis and metastasis). Sulforaphane potentiates the overexpression of TIMP1, AURKA, and CEP55, and promotes inhibition of CRYAB, PLCE1, and MMP28, that might lead to the progression of CRC (CTD). Pathway enrichment analysis revealed that SFN stimulated Transcriptional activation of RUNX2, AURKA activation by TPX2, IL-10 signaling, while inhibited Differentiation of White and Brown Adipocyte process, an underlying pathway which inactivation led to obesity (Cytoscape ClueGo + CluePedia, DAVID). Thus, genome signature of CRC patients could serve as important factor when addressing the risk-to-benefit profile of SFN. Patients with colon cancer and increased expression of TIMP1, CCL20, SPP1, AURKA, CEP55, NEK2, SOX9 and CDK1, or downregulation of CRYAB, PLCE1, MMP28, BMP2 and PLAC8 may not be ideal candidates for SFN chemoprevention.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Isotiocianatos/efeitos adversos , Sulfóxidos/efeitos adversos , Adipócitos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Isotiocianatos/uso terapêutico , Metástase Neoplásica/genética , Prognóstico , Análise Serial de Proteínas , Sulfóxidos/uso terapêutico , Análise de Sobrevida , Ativação Transcricional/efeitos dos fármacos
6.
Environ Res ; 199: 111300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015299

RESUMO

Breast cancer is at the forefront of female malignancy and the leading cause of cancer death among women. Gender, age, hormone therapy, smoking, exposure to endocrine disruptors and family history are significant breast cancer risk factors according to epidemiological data. Considering metalloestrogenic Cd property and a plethora of research work on hormone involvement in breast cancer the study aimed to determine Cd concentration in three compartments of breast cancer patients in relation to their blood hormone status. Further, as oxidative stress is a critical mechanism of Cd toxicity, the objective of this study was to determine potential changes in oxidative status homeostasis. The study enrolled 55 patients with breast cancer diagnosis and 41 healthy women with benign breast changes. Concentration of Cd was determined using graphite furnace atomic absorption spectrometry. Cadmium concentration in tumor tissue was significantly higher than control and almost four times higher than Cd concentration in the healthy surrounding tissue. Strong positive correlation was observed between Cd concentrations in changed breast tissue and FSH and LH levels, while the correlation was negative with estradiol level. Cancer patients had significantly increased blood total antioxidative status while total oxidative status did not significantly differ between study groups. The study revealed Cd implication in breast cancer onset following a significant odd ratio for Cd levels in changed tissue samples. Moreover, presented data confirmed sex hormone and oxidative status imbalance caused by Cd presence, closely related to cancer development.


Assuntos
Neoplasias da Mama , Cádmio , Cádmio/toxicidade , Estudos de Casos e Controles , Feminino , Humanos , Estresse Oxidativo , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA