Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(5): e0015423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37565760

RESUMO

Shigella flexneri is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the Shigella virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed. We chose to utilize two phenotypic assays, inhibition of Shigella survival in macrophages and Shigella growth inhibition (minimum inhibitory concentration), to interrogate the 1.7 M compound screening collection subset of the GlaxoSmithKline drug discovery chemical library. A number of secondary assays on the hit compounds resulting from the primary screens were conducted, which, in combination with chemical, structural, and physical property analyses, narrowed the final hit list to 44 promising compounds for further drug discovery efforts. The rapid development of antibiotic resistance is a critical problem that has the potential of returning the world to a "pre-antibiotic" type of environment, where millions of people will die from previously treatable infections. One relatively newer approach to minimize the selection pressures for the development of resistance is to target virulence pathways. This is anticipated to eliminate any resistance selection pressure in environmental exposure to virulence-targeted antibiotics and will have the added benefit of not affecting the non-virulent microbiome. This paper describes the development and application of a simple, reproducible, and sensitive assay to interrogate an extensive chemical library in high-throughput screening format for activity against the survival of Shigella flexneri 2457T-nl in THP-1 macrophages. The ability to screen very large numbers of compounds in a reasonable time frame (~1.7 M compounds in ~8 months) distinguishes this assay as a powerful tool in further exploring new compounds with intracellular effect on S. flexneri or other pathogens with similar pathways of pathogenesis. The assay utilizes a luciferase reporter which is extremely rapid, simple, relatively inexpensive, and sensitive and possesses a broad linear range. The assay also utilized THP-1 cells that resemble primary monocytes and macrophages in morphology and differentiation properties. THP-1 cells have advantages over human primary monocytes or macrophages because they are highly plastic and their homogeneous genetic background minimizes the degree of variability in the cell phenotype (1). The intracellular and virulence-targeted selectivity of our methodology, determined via secondary screening, is an enormous advantage. Our main interest focuses on hits that are targeting virulence, and the most promising compounds with adequate physicochemical and drug metabolism and pharmacokinetic (DMPK) properties will be progressed to a suitable in vivo shigellosis model to evaluate the therapeutic potential of this approach. Additionally, compounds that act via a host-directed mechanism could be a promising source for further research given that it would allow a whole new, specific, and controlled approach to the treatment of diseases caused by some pathogenic bacteria.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Shigella flexneri , Virulência/genética , Disenteria Bacilar/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Macrófagos
2.
J Appl Microbiol ; 133(2): 1001-1013, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35578999

RESUMO

AIMS: The aim of this study was to construct the improved pMAL expression vector to increase the efficacy of purification of small native peptides and their clear-cut separation from MBP tag. The modifications we introduced can be applied to many expression vectors. METHODS AND RESULTS: To improve the pMAL expression vector, we introduced the His6 tag and the enterokinase cleavage site (Ek) downstream from the MBP tag and Xa cleavage site on the original vector. For cloning of a desired peptide DNA, the enterokinase site contains a unique BsaBI restriction site adjacent to the original multi-cloning site. This redesigned pMAL vector was optimized for the purification of cytoplasmic (pMALc5HisEk) and periplasmic (pMALp5HisEk) peptides. The purification of native and active peptide (P) was obtained following two-step affinity chromatography. In the first step, the entire MBP-His6 -Ek-P fusion protein is purified using the Ni-NTA agarose column. This fusion protein was cleaved with active His6 tagged enterokinase. In the second step, the further purification was performed by column containing the mixture of amylose and Ni-NTA agarose resins. This removes both the MBP-His6 and His6 -enterokinase leaving pure native protein in solution. These new vectors and the two-step purification protocol were successfully applied in purification of active native small antimicrobial peptides (AMPs), lactococcin A and human ß-defensin. CONCLUSIONS: We constructed the improved pMAL expression vectors and established the pipeline and optimal conditions for their use in efficient purification of large amounts of active native small peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Choice of expression vector impacts on the efficiency of expression and purification of desired proteins. The idea of redesigning pMAL vector was driven by the need for rapid purification of larger amounts of active native AMPs. This newly improved pMAL vector, the cloning strategy, expression conditions and two-step purification protocol represent a unique simple approach which can be applied in every laboratory.


Assuntos
Peptídeos Antimicrobianos , Enteropeptidase , Cromatografia de Afinidade/métodos , Clonagem Molecular , Enteropeptidase/genética , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sefarose/química , Sefarose/metabolismo
3.
Arch Pharm (Weinheim) ; 353(1): e1900238, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710123

RESUMO

A small library of benzo[4,5]thieno[2,3-d]pyrimidine phthalimide and amine derivatives was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4). The phthalimide derivatives exhibited better activity than the amine precursors, with 2-(2-(3-chlorobenzyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)isoindoline-1,3-dione (compound 14) as the most effective inhibitor (IC50 = 34.17 ± 5.11 µM). The five most potent selected inhibitors did not show cytotoxicity to a greater extent on Caco-2 cells, even at a concentration of 250 µM. Compound 14 is considered as a novel representative of the rare noncompetitive DPP-4 inhibitors. Molecular docking and dynamics simulation indicated the importance of the Tyr547, Lys554, and Trp629 residues of DPP-4 in the formation of the enzyme-inhibitor complex. These observations could be potentially utilized for the rational design and optimization of novel (structurally similar, with phthalimide moiety, or different) noncompetitive DPP-4 inhibitors, which are anyway rare, but favorable in terms of the saturation of substrate competition.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ftalimidas/farmacologia , Pirimidinas/farmacologia , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
4.
Chem Biol Interact ; 315: 108873, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669219

RESUMO

Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo[3,2-a]benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 µM, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 µM. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.


Assuntos
Benzimidazóis/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Xantina Oxidase/antagonistas & inibidores , Sítios de Ligação , Células CACO-2 , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular/métodos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
5.
J Inorg Biochem ; 199: 110758, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299379

RESUMO

Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Dano ao DNA/efeitos dos fármacos , Hidrazonas/química , Paládio/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Cristalografia por Raios X , DNA Topoisomerases Tipo I/metabolismo , Humanos , Células MCF-7 , Estrutura Molecular , Ligação Proteica , Albumina Sérica Humana/metabolismo , Relação Estrutura-Atividade , Células THP-1
6.
World J Microbiol Biotechnol ; 35(6): 85, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134456

RESUMO

Surface properties like hydrophobicity, aggregation ability, adhesion to mucosal surfaces and epithelial cells and transit time are key features for the characterization of probiotic strains. In this study, we used two Lactobacillus paracasei subsp. paracasei strains (BGNJ1-64 and BGSJ2-8) strains which were previously described with very strong aggregation capacity. The aggregation promoting factor (AggLb) expressed in these strains showed high level of binding to collagen and fibronectin, components of extracellular matrix. The working hypothesis was that strains able to aggregate have an advantage to resist in intestinal tract. So, we assessed whether these strains and their derivatives (without aggLb gene) are able to bind or not to intestinal components and we compared the transit time of each strains in mice. In that purpose parental strains (BGNJ1-64 and BGSJ2-8) and their aggregation negative derivatives (BGNJ1-641 and BGSJ2-83) were marked with double antibiotic resistance in order to be tracked in in vivo experiments in mice. Comparative analysis of binding ability of WT and aggregation negative strains to different human intestinal cell lines and mucin revealed no significant difference among them, excluding involvement of AggLb in interaction with surface of intestinal cells and mucin. In vivo experiments showed that surviving and transit time of marked strains in mice did not drastically depend on the presence of the AggLb aggregation factor.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/microbiologia , Intestinos/microbiologia , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Ligação Proteica , Animais , Aderência Bacteriana/fisiologia , Células CACO-2 , Moléculas de Adesão Celular/fisiologia , Colágeno/metabolismo , Fibronectinas/metabolismo , Células HT29 , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Probióticos , Análise de Onda de Pulso , Propriedades de Superfície
7.
Biofouling ; 34(6): 685-698, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027759

RESUMO

The ability of lactic acid bacteria to form multi-cellular aggregates via self-aggregation is regarded as an important mechanism for stress tolerance, adhesion, colonization and genetic material exchange. The novel aggLr gene encoding for the auto-aggregation promoting protein (AggLr) of Lactococcus raffinolactis BGTRK10-1 was cloned. Heterologous expression of AggLr enabled auto-aggregation, higher hydrophobicity and collagen and fibronectin binding of the carrier strains. Domain analysis and the type of aggregates formed by cells expressing AggLr confirmed that this aggregation factor belongs to the family of high molecular weight proteins that the authors propose to be called Snow-flake Forming Collagen Binding Aggregation Factors (SFCBAF). An additional feature of SFCBAF is that they are rich in threonine and lysine and are free of cysteine in all of the aggregation factors described so far. In contrast to previously discovered SFCBAF, the gene encoding for AggLr is located on the chromosome in the strain BGTRK10-1.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Moléculas de Adesão Celular/fisiologia , Lactococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA