Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689546

RESUMO

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Linhagem Celular Tumoral
2.
STAR Protoc ; 3(2): 101355, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35542177

RESUMO

The colony formation assay is the gold-standard technique to assess cell viability after treatment with cytotoxic reagents, ionizing radiation, and cytotoxic combinatorial treatments. This protocol describes a high-throughput automated and high-content imaging approach to screen siRNA molecular libraries in HeLa cervical cancer cells in 96-well format. We detail reverse transfection of cells with siRNAs, followed by ionizing radiation, fixing, and staining of the plates for automated colony counting. This protocol can be used across a broad range of cell types. For complete details on the use and execution of this protocol, please refer to Tiwana et al. (2015).


Assuntos
Ensaios de Triagem em Larga Escala , Radiação Ionizante , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Transfecção
3.
Sci Rep ; 11(1): 15319, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321581

RESUMO

Inhibition of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome has recently emerged as a promising therapeutic target for several inflammatory diseases. After priming and activation by inflammation triggers, NLRP3 forms a complex with apoptosis-associated speck-like protein containing a CARD domain (ASC) followed by formation of the active inflammasome. Identification of inhibitors of NLRP3 activation requires a well-validated primary high-throughput assay followed by the deployment of a screening cascade of assays enabling studies of structure-activity relationship, compound selectivity and efficacy in disease models. We optimized a NLRP3-dependent fluorescent tagged ASC speck formation assay in murine immortalized bone marrow-derived macrophages and utilized it to screen a compound library of 81,000 small molecules. Our high-content screening assay yielded robust assay metrics and identified a number of inhibitors of NLRP3-dependent ASC speck formation, including compounds targeting HSP90, JAK and IKK-ß. Additional assays to investigate inflammasome priming or activation, NLRP3 downstream effectors such as caspase-1, IL-1ß and pyroptosis form the basis of a screening cascade to identify NLRP3 inflammasome inhibitors in drug discovery programs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/biossíntese , Células Cultivadas , Dimetil Sulfóxido/farmacologia , Descoberta de Drogas , Furanos/farmacologia , Genes Reporter , Indenos/farmacologia , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Nigericina/farmacologia , Fenótipo , Piroptose/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Sulfonamidas/farmacologia
4.
Cancer Res ; 81(7): 1667-1680, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33558336

RESUMO

Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Carcinogênese/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação de Sentido Incorreto , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polimorfismo de Nucleotídeo Único/fisiologia , Prognóstico , Fatores de Risco , Transdução de Sinais/genética , Resultado do Tratamento
5.
Physiol Rep ; 8(13): e14482, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643289

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) begins with steatosis, where a mixed macrovesicular pattern of large and small lipid droplets (LDs) develops. Since in vitro models recapitulating this are limited, the aims of this study were to develop mixed macrovesicular steatosis in immortalized hepatocytes and investigate effects on intracellular metabolism by altering nutritional substrates. METHODS: Huh7 cells were cultured in 11 mM glucose and 2% human serum (HS) for 7 days before additional sugars and fatty acids (FAs), either with 200 µM FAs (low fat low sugar; LFLS), 5.5 mM fructose + 200 µM FAs (low fat high sugar; LFHS), or 5.5 mM fructose + 800 µM FAs (high fat high sugar; HFHS), were added for 7 days. FA metabolism, lipid droplet characteristics, and transcriptomic signatures were investigated. RESULTS: Between the LFLS and LFHS conditions, there were few notable differences. In the HFHS condition, intracellular triacylglycerol (TAG) was increased and the LD pattern and distribution was similar to that found in primary steatotic hepatocytes. HFHS-treated cells had lower levels of de novo-derived FAs and secreted larger, TAG-rich lipoprotein particles. RNA sequencing and gene set enrichment analysis showed changes in several pathways including those involved in metabolism and cell cycle. CONCLUSIONS: Repeated doses of HFHS treatment resulted in a cellular model of NAFLD with a mixed macrovesicular LD pattern and metabolic dysfunction. Since these nutrients have been implicated in the development of NAFLD in humans, the model provides a good physiological basis for studying NAFLD development or regression in vitro.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Hepatócitos/patologia , Humanos , Gotículas Lipídicas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Transcriptoma
6.
SLAS Discov ; 25(7): 801-811, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32458721

RESUMO

High-content screening to monitor disease-modifying phenotypes upon small-molecule addition has become an essential component of many drug and target discovery platforms. One of the most common phenotypic approaches, especially in the field of oncology research, is the assessment of cell viability. However, frequently used viability readouts employing metabolic proxy assays based on homogeneous colorimetric/fluorescent reagents are one-dimensional, provide limited information, and can in many cases yield conflicting or difficult-to-interpret results, leading to misinterpretation of data and wasted resources.The resurgence of high-content, phenotypic screening has significantly improved the quality and breadth of cell viability data, which can be obtained at the very earliest stages of drug and target discovery. Here, we describe a relatively inexpensive, high-throughput, high-content, multiparametric, fluorescent imaging protocol using a live-cell method of three fluorescent probes (Hoechst, Yo-Pro-3, and annexin V), that is amenable to the addition of further fluorophores. The protocol enables the accurate description and profiling of multiple cell death mechanisms, including apoptosis and necrosis, as well as accurate determination of compound IC50, and has been validated on a range of high-content imagers and image analysis software. To validate the protocol, we have used a small library of approximately 200 narrow-spectrum kinase inhibitors and clinically approved drugs. This fully developed, easy-to-use pipeline has subsequently been implemented in several academic screening facilities, yielding fast, flexible, and rich cell viability data for a range of early-stage high-throughput drug and target discovery programs.


Assuntos
Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Colorimetria , Corantes Fluorescentes/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Ensaios de Triagem em Larga Escala , Humanos , Processamento de Imagem Assistida por Computador/métodos , Software
7.
Neuron ; 101(5): 905-919.e8, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30795902

RESUMO

Loss-of-function mutations in NaV1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how NaV1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous NaV1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that NaV1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some NaV1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/genética , Nociceptividade , Nociceptores/fisiologia , Insensibilidade Congênita à Dor/metabolismo , Potenciais de Ação , Adulto , Axônios/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptores/metabolismo , Nociceptores/patologia , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/fisiopatologia , Nós Neurofibrosos/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
8.
Mol Pharm ; 12(8): 2675-87, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25941945

RESUMO

Although foamy macrophages (FMΦ) are commonly observed during nonclinical development of medicines for inhalation, there are no accepted criteria to differentiate adaptive from adverse FMΦ responses in drug safety studies. The purpose of this study was to develop a multiparameter in vitro assay strategy to differentiate and characterize different mechanisms of drug-induced FMΦ. Amiodarone, staurosporine, and poly(vinyl acetate) nanoparticles were used to induce distinct FMΦ phenotypes in J774A.1 cells, which were then compared with negative controls. Treated macrophages were evaluated for morphometry, lipid accumulation, gene expression, apoptosis, cell activation, and phagocytosis. Analysis of vacuolization (number/area vacuoles per cell) and phospholipid content revealed inducer-dependent distinctive patterns, which were confirmed by electron microscopy. In contrast to the other inducers, amiodarone increased vacuole size rather than number and resulted in phospholipid accumulation. No pronounced dysregulation of transcriptional activity or apoptosis was observed in response to sublethal concentrations of all inducers. Functionally, FMΦ induction did not affect macrophage activation by lipopolysaccharide, but it reduced phagocytic capacity, with different patterns of induction, severity, and resolution observed with the different inducers. An in vitro multiparameter assay strategy is reported that successfully differentiates and characterizes mechanisms leading to FMΦ induction by different types of agents.


Assuntos
Amiodarona/farmacologia , Bioensaio/métodos , Diferenciação Celular/efeitos dos fármacos , Células Espumosas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Polivinil/farmacologia , Estaurosporina/farmacologia , Administração por Inalação , Amiodarona/administração & dosagem , Animais , Células Cultivadas , Dose Letal Mediana , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Polivinil/administração & dosagem , Estaurosporina/administração & dosagem , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA