Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 822437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296085

RESUMO

The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air-liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.


Assuntos
Cloretos , Proteômica , Idoso , Cloretos/metabolismo , Células Epiteliais/metabolismo , Humanos , Mucosa Nasal/metabolismo
3.
Front Physiol ; 10: 694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263421

RESUMO

Calcium-activated anion secretion is expected to ameliorate cystic fibrosis, a genetic disease that carries an anion secretory defect in exocrine tissues. Human patients and animal models of the disease that present a mild intestinal phenotype have been postulated to bear a compensatory calcium-activated anion secretion in the intestine. TMEM16A is calcium-activated anion channel whose presence in the intestinal epithelium is contradictory. We aim to test the functional expression of TMEM16A using animal models with Cftr and/or Tmem16a intestinal silencing. Expression of TMEM16A was studied in a wild type and intestinal Tmem16a knockout mice by mRNA-seq, mass-spectrometry, q-PCR, Western blotting and immunolocalization. Calcium-activated anion secretion was recorded in the ileum and proximal colon of these animals including intestinal Cftr knockout and double mutants with dual Tmem16a and Cftr intestinal ablation. Mucus homeostasis was studied by immune-analysis of Mucin-2 (Muc2) and survival curves were recorded. Tmem16a transcript was found in intestine. Nevertheless, protein was barely detected in colon samples. Electrophysiological measurements demonstrated that the intestinal deletion of Tmem16a did not change calcium-activated anion secretion induced by carbachol or ATP in ileum and proximal colon. Muc2 architecture was not altered by Tmem16a silencing as was observed when Cftr was deleted from mouse intestine. Tmem16a silencing neither affected animal survival nor modified the lethality observed in the intestinal Cftr-null mouse. Our results demonstrate that TMEM16A function in the murine intestine is not related to electrogenic calcium-activated anion transport and does not affect mucus homeostasis and survival of animals.

4.
Sci Rep ; 8(1): 9320, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915289

RESUMO

Nearly 70% of cystic fibrosis (CF) patients bear the phenylalanine-508 deletion but disease severity differs greatly, and is not explained by the existence of different mutations in compound heterozygous. Studies demonstrated that genes other than CFTR relate to intestinal disease in humans and CF-mouse. Kcnn4, the gene encoding the calcium-activated potassium channel KCa3.1, important for intestinal secretion, is present in a locus linked with occurrence of intestinal CF-disease in mice and humans. We reasoned that it might be a CF-modifier gene and bred a CF-mouse with Kcnn4 silencing, finding that lethality was almost abolished. Silencing of Kcnn4 did not improve intestinal secretory functions, but rather corrected increased circulating TNF-α level and reduced intestinal mast cell increase. Given the importance of mast cells in intestinal disease additional double mutant CF-animals were tested, one lacking mast cells (C-kitW-sh/W-sh) and Stat6-/- to block IgE production. While mast cell depletion had no effect, silencing Stat6 significantly reduced lethality. Our results show that Kcnn4 is an intestinal CF modifier gene partially acting through a STAT6-dependent mechanism.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Genes Modificadores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Enteropatias/genética , Animais , Citocinas/metabolismo , Imunoglobulina E/metabolismo , Mediadores da Inflamação/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Mucosa Intestinal/patologia , Ativação do Canal Iônico , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Fator de Transcrição STAT6/metabolismo , Análise de Sobrevida , Aumento de Peso
5.
Pflugers Arch ; 470(9): 1335-1348, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860639

RESUMO

Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca2+-dependent Cl- secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl- secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca2+-gated Cl- channels are known to contribute to calcium-dependent Cl- secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca2+-dependent Cl- secretion, a CFTR deletion model (cftr-/-), and a CF pathology model that overexpresses the epithelial Na+ channel ß-subunit (ßENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca2+-dependent Cl- secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr-/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by ßENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.


Assuntos
Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Fibrose Cística/metabolismo , Animais , Brônquios/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Epitélio/metabolismo , Feminino , Transporte de Íons/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/metabolismo , Transdução de Sinais/fisiologia , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA