Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Cell Dev Biol ; 12: 1387198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726320

RESUMO

Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.

2.
Res Sq ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986984

RESUMO

Background: Tumor endothelial cells (TECs) represent the primary interface between the tumor microenvironment and circulating immune cells, however their phenotypes are incompletely understood in highly vascularized clear cell renal cell carcinoma (ccRCC). Methods: We purified tumor and matched normal endothelial cells (NECs) from ccRCC specimens and performed single-cell RNA-sequencing to create a reference-quality atlas available as a searchable web resource for gene expression patterns. We established paired primary TECs and NECs cultures for ex vivo functional testing. Results: TECs from multiple donors shared a common phenotype with increased expression of pathways related to extracellular matrix regulation, cell-cell communication, and insulin-like growth factor signaling that was conserved in comparison to hepatocellular carcinoma associated TECs, suggesting convergent TEC phenotypes between unrelated tumors. Cultured TECs stably maintained a core program of differentially regulated genes, were inherently resistant to apoptosis after vascular endothelial growth factor removal and displayed increased adhesiveness to subsets of immune cells including regulatory T-cells. Conclusions: Our studies delineate unique functional and phenotypic properties of TECs, which may provide insights into their interactions with available and emerging therapies. Functional phenotypes of cultured TECs suggest potential mechanisms of resistance to both antiangiogenic and immune-based therapies.

3.
Neoplasia ; 46: 100948, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944353

RESUMO

Metastatic renal cell carcinoma (RCC) remains an incurable disease for most patients highlighting an urgent need for new treatments. However, the preclinical investigation of new therapies is limited by traditional two-dimensional (2D) cultures which do not recapitulate the properties of tumor cells within a collagen extracellular matrix (ECM), while human tumor xenografts are time-consuming, expensive and lack adaptive immune cells. We report a rapid and economical human microphysiological system ("RCC-on-a-chip") to investigate therapies targeting RCC spheroids in a 3D collagen ECM. We first demonstrate that culture of RCC cell lines A498 and RCC4 in a 3D collagen ECM more faithfully reproduces the gene expression program of primary RCC tumors compared to 2D culture. We next used bortezomib as a cytotoxin to develop automated quantification of dose-dependent tumor spheroid killing. We observed that viable RCC spheroids exhibited collective migration within the ECM and demonstrated that our 3D system can be used to identify compounds that inhibit spheroid collective migration without inducing cell death. Finally, we demonstrate the RCC-on-a-chip as a platform to model the trafficking of tumor-reactive T cells into the ECM and observed antigen-specific A498 spheroid killing by engineered human CD8+ T cells expressing an ROR1-specific chimeric antigen receptor. In summary, the phenotypic differences between the 3D versus 2D environments, rapid imaging-based readout, and the ability to carefully study the impact of individual variables with quantitative rigor will encourage adoption of the RCC-on-a-chip system for testing a wide range of emerging therapies for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colágeno , Dispositivos Lab-On-A-Chip , Esferoides Celulares/metabolismo
4.
Biomaterials ; 298: 122128, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121102

RESUMO

Multicellular clustering provides cancer cells with survival advantages and facilitates metastasis. At the tumor migration front, cancer cell clusters are surrounded by an aligned stromal topography. It remains unknown whether aligned stromal topography regulates the resistance of migrating cancer cell clusters to therapeutics. Using a hybrid nanopatterned model to characterize breast cancer cell clusters at the migration front with aligned stromal topography, we demonstrate that topography-induced migrating cancer cell clusters exhibit upregulated cytochrome P450 family 1 (CYP1) drug metabolism and downregulated glycolysis gene signatures, which correlates with unfavorable prognosis. Screening on approved oncology drugs shows that cancer cell clusters on aligned stromal topography are more resistant to diverse chemotherapeutics. Full-dose drug testings further indicate that topography induces drug resistance of hormone receptor-positive breast cancer cell clusters to doxorubicin and tamoxifen and triple-negative breast cancer cell clusters to doxorubicin by activating the aryl hydrocarbon receptor (AhR)/CYP1 pathways. Inhibiting the AhR/CYP1 pathway restores reactive oxygen species-mediated drug sensitivity to migrating cancer cell clusters, suggesting a plausible therapeutic direction for preventing metastatic recurrence.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
5.
Front Oncol ; 12: 952252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185254

RESUMO

Objective responses of metastatic renal cell carcinoma (RCC) associated with systemic immunotherapies suggest the potential for T-cell-mediated tumor clearance. Recent analyses associate clonally expanded T cells present in the tumor at diagnosis with responses to immune checkpoint inhibitors (ICIs). To identify and further characterize tumor-associated, clonally expanded T cells, we characterized the density, spatial distribution, T-cell receptor (TCR) repertoire, and transcriptome of tumor-infiltrating T cells from 14 renal tumors at the time of resection and compared them with T cells in peripheral blood and normal adjacent kidney. Multiplex immunohistochemistry revealed that T-cell density was higher in clear cell RCC (ccRCC) than in other renal tumor histologies with spatially nonuniform T-cell hotspots and exclusion zones. TCR repertoire analysis also revealed increased clonal expansion in ccRCC tumors compared with non-clear cell histologies or normal tissues. Expanded T-cell clones were most frequently CD8+ with some detectable in peripheral blood or normal kidney and others found exclusively within the tumor. Divergent expression profiles for chemokine receptors and ligands and the Ki67 proliferation marker distinguished tumor-restricted T-cell clones from those also present in blood suggesting a distinct phenotype for subsets of clonally expanded T cells that also differed for upregulated markers of T-cell activation and exhaustion. Thus, our single-cell level stratification of clonally expanded tumor infiltrating T-cell subpopulations provides a framework for further analysis. Future studies will address the spatial orientation of these clonal subsets within tumors and their association with treatment outcomes for ICIs or other therapeutic modalities.

6.
Hum Vaccin Immunother ; 17(7): 1882-1896, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33667140

RESUMO

In renal-cell carcinoma (RCC), tumor-reactive T-cell responses can occur spontaneously or in response to systemic immunotherapy with cytokines and immune checkpoint inhibitors. Cancer vaccines and engineered T-cell therapies are designed to selectively augment tumor antigen-specific CD8+ T-cell responses with the goal to elicit tumor regression and avoid toxicities associated with nonspecific immunotherapies. In this review, we provide an overview of the central role of T-cell immunity in the treatment of advanced RCC. Clinical outcomes for antigen-targeted vaccines or other T-cell-engaging therapies for RCC are summarized and evaluated, and emerging new strategies to enhance the effectiveness of antigen-specific therapy for RCC are discussed.


Assuntos
Vacinas Anticâncer , Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/terapia , Humanos , Imunoterapia , Neoplasias Renais/terapia , Linfócitos T
7.
Trends Biotechnol ; 38(8): 857-872, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32673588

RESUMO

Tissues- and organs-on-chips are microphysiological systems (MPSs) that model the architectural and functional complexity of human tissues and organs that is lacking in conventional cell monolayer cultures. While substantial progress has been made in a variety of tissues and organs, chips recapitulating immune responses have not advanced as rapidly. This review discusses recent progress in MPSs for the investigation of immune responses. To illustrate recent developments, we focus on two cases in point: immunocompetent tumor microenvironment-on-a-chip devices that incorporate stromal and immune cell components and pathomimetic modeling of human mucosal immunity and inflammatory crosstalk. More broadly, we discuss the development of systems immunology-on-a-chip devices that integrate microfluidic engineering approaches with high-throughput omics measurements and emerging immunological applications of MPSs.


Assuntos
Imunidade/genética , Dispositivos Lab-On-A-Chip , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Humanos , Sistema Imunitário , Imunidade/imunologia , Microfluídica , Neoplasias/genética , Microambiente Tumoral/genética
8.
EBioMedicine ; 41: 427-442, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827930

RESUMO

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Assuntos
Retrovirus Endógenos/genética , Epigenômica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Redutases do Citocromo/genética , Retrovirus Endógenos/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Diester Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Proteínas/genética , Pirofosfatases/genética , RNA Longo não Codificante , Taxa de Sobrevida , Sequências Repetidas Terminais/genética , Enzimas de Conjugação de Ubiquitina/genética
9.
Neoplasia ; 20(6): 610-620, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29747161

RESUMO

Tractable human tissue-engineered 3D models of cancer that enable fine control of tumor growth, metabolism, and reciprocal interactions between different cell types in the tumor microenvironment promise to accelerate cancer research and pharmacologic testing. Progress to date mostly reflects the use of immortalized cancer cell lines, and progression to primary patient-derived tumor cells is needed to realize the full potential of these platforms. For the first time, we report endothelial sprouting induced by primary patient tumor cells in a 3D microfluidic system. Specifically, we have combined primary human clear cell renal cell carcinoma (ccRCC) cells from six independent donors with human endothelial cells in a vascularized, flow-directed, 3D culture system ("ccRCC-on-a-chip"). The upregulation of key angiogenic factors in primary human ccRCC cells, which exhibited unique patterns of donor variation, was further enhanced when they were cultured in 3D clusters. When embedded in the matrix surrounding engineered human vessels, these ccRCC tumor clusters drove potent endothelial cell sprouting under continuous flow, thus recapitulating the critical angiogenic signaling axis between human ccRCC cells and endothelial cells. Importantly, this phenotype was driven by a primary tumor cell-derived biochemical gradient of angiogenic growth factor accumulation that was subject to pharmacological blockade. Our novel 3D system represents a vascularized tumor model that is easy to image and quantify and is fully tunable in terms of input cells, perfusate, and matrices. We envision that this ccRCC-on-a-chip will be valuable for mechanistic studies, for studying tumor-vascular cell interactions, and for developing novel and personalized antitumor therapies.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Neovascularização Patológica/patologia , Indutores da Angiogênese/metabolismo , Carcinoma de Células Renais/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Renais/metabolismo , Neovascularização Patológica/metabolismo
10.
Nat Commun ; 9(1): 42, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298978

RESUMO

Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene's potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents.


Assuntos
DNA Helicases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/genética , Aprendizado de Máquina , Proteínas Nucleares/genética , Medicina de Precisão/métodos , Fatores de Transcrição/genética , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Conjuntos de Dados como Assunto , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico
11.
Clin Cancer Res ; 23(24): 7608-7620, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28974548

RESUMO

Purpose: Steroidal androgens suppress androgen receptor and estrogen receptor positive (AR/ER+) breast cancer cells and were used to treat breast cancer, eliciting favorable response. The current study evaluates the activity and efficacy of the oral selective AR modulator RAD140 in in vivo and in vitro models of AR/ER+ breast cancer.Experimental Design: A series of in vitro assays were used to determine the affinity of RAD140 to 4 nuclear receptors and evaluate its tissue-selective AR activity. The efficacy and pharmacodynamics of RAD140 as monotherapy or in combination with palbociclib were evaluated in AR/ER+ breast cancer xenograft models.Results: RAD140 bound AR with high affinity and specificity and activated AR in breast cancer but not prostate cancer cells. Oral administration of RAD140 substantially inhibited the growth of AR/ER+ breast cancer patient-derived xenografts (PDX). Activation of AR and suppression of ER pathway, including the ESR1 gene, were seen with RAD140 treatment. Coadministration of RAD140 and palbociclib showed improved efficacy in the AR/ER+ PDX models. In line with efficacy, a subset of AR-repressed genes associated with DNA replication was suppressed with RAD140 treatment, an effect apparently enhanced by concurrent administration of palbociclib.Conclusions: RAD140 is a potent AR agonist in breast cancer cells with a distinct mechanism of action, including the AR-mediated repression of ESR1 It inhibits the growth of multiple AR/ER+ breast cancer PDX models as a single agent, and in combination with palbociclib. The preclinical data presented here support further clinical investigation of RAD140 in AR/ER+ breast cancer patients. Clin Cancer Res; 23(24); 7608-20. ©2017 AACR.


Assuntos
Androgênios/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Nitrilas/farmacologia , Oxidiazóis/farmacologia , Receptores Androgênicos/metabolismo , Androgênios/uso terapêutico , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Humanos , Células MCF-7 , Camundongos , Nitrilas/uso terapêutico , Oxidiazóis/uso terapêutico , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 11(4): 630-44, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892236

RESUMO

Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/efeitos dos fármacos , Proteoma/genética , Neoplasias de Mama Triplo Negativas/genética
13.
Nucleic Acids Res ; 43(3): 1332-44, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25583238

RESUMO

We define a new category of candidate tumor drivers in cancer genome evolution: 'selected expression regulators' (SERs)-genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW ( SPAR: se selected exp R: essi O: n regulators identified W: ith penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker (PYCARD) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Leucemia Mieloide Aguda/genética , Redes Reguladoras de Genes , Humanos , Mutação
14.
Blood ; 125(6): 1025-33, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25343958

RESUMO

Several approaches for controlling hematopoietic stem and progenitor cell expansion, lineage commitment, and maturation have been investigated for improving clinical interventions. We report here that amino acid substitutions in a thrombopoietin receptor (Mpl)--containing cell growth switch (CGS) extending receptor stability improve the expansion capacity of human cord blood CD34(+) cells in the absence of exogenous cytokines. Activation of this CGS with a chemical inducer of dimerization (CID) expands total cells 99-fold, erythrocytes 70-fold, megakaryocytes 0.5-fold, and CD34(+) stem/progenitor cells 4.4-fold by 21 days of culture. Analysis of cells in these expanded populations identified a CID-dependent bipotent erythrocyte-megakaryocyte precursor (PEM) population, and a CID-independent macrophage population. The CD235a(+)/CD41a(+) PEM population constitutes up to 13% of the expansion cultures, can differentiate into erythrocytes or megakaryocytes, exhibits very little expansion capacity, and exists at very low levels in unexpanded cord blood. The CD206(+) macrophage population constitutes up to 15% of the expansion cultures, exhibits high-expansion capacity, and is physically associated with differentiating erythroblasts. Taken together, these studies describe a fundamental enhancement of the CGS expansion platform, identify a novel precursor population in the erythroid/megakaryocytic differentiation pathway of humans, and implicate an erythropoietin-independent, macrophage-associated pathway supporting terminal erythropoiesis in this expansion system.


Assuntos
Substituição de Aminoácidos , Células Eritroides/citologia , Eritropoese , Megacariócitos/citologia , Receptores de Trombopoetina/genética , Animais , Antígenos CD34/análise , Linhagem Celular , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Sangue Fetal/citologia , Humanos , Megacariócitos/metabolismo , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/análise , Receptores de Trombopoetina/metabolismo
16.
Cancer Immunol Res ; 2(4): 301-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24764577

RESUMO

Janus kinase-2 (JAK2) supports breast cancer growth, and clinical trials testing JAK2 inhibitors are under way. In addition to the tumor epithelium, JAK2 is also expressed in other tissues including immune cells; whether the JAK2 mRNA levels in breast tumors correlate with outcomes has not been evaluated. Using a case-control design, JAK2 mRNA was measured in 223 archived breast tumors and associations with distant recurrence were evaluated by logistic regression. The frequency of correct pairwise comparisons of patient rankings based on JAK2 levels versus survival outcomes, the concordance index (CI), was evaluated using data from 2,460 patients in three cohorts. In the case-control study, increased JAK2 was associated with a decreasing risk of recurrence (multivariate P = 0.003, n = 223). Similarly, JAK2 was associated with a protective CI (<0.5) in the public cohorts: NETHERLANDS CI = 0.376, n = 295; METABRIC CI = 0.462, n = 1,981; OSLOVAL CI = 0.452, n = 184. Furthermore, JAK2 was strongly correlated with the favorable prognosis LYM metagene signature for infiltrating T cells (r = 0.5; P < 2 × 10(-16); n = 1,981) and with severe lymphocyte infiltration (P = 0.00003, n = 156). Moreover, the JAK1/2 inhibitor ruxolitinib potently inhibited the anti-CD3-dependent production of IFN-γ, a marker of the differentiation of Th cells along the tumor-inhibitory Th1 pathway. The potential for JAK2 inhibitors to interfere with the antitumor capacities of T cells should be evaluated.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Expressão Gênica , Janus Quinase 2/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , Recidiva , Resultado do Tratamento
17.
Endocrinology ; 155(4): 1398-406, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24428527

RESUMO

The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases.


Assuntos
Acetanilidas/farmacologia , Ácido Caínico/farmacologia , Neurônios/metabolismo , Animais , Apoptose , Sobrevivência Celular , Células Cultivadas , Feminino , Hipocampo/metabolismo , Antagonistas de Hormônios/farmacologia , Masculino , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas , Oxidiazóis , Ratos , Ratos Sprague-Dawley , Risco , Transdução de Sinais
18.
Anticancer Res ; 31(4): 1189-95, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21508364

RESUMO

BACKGROUND: Erythropoietin (EPO) was shown to reduce tumor survival in recent trials, however, its mechanisms of action are unclear. Efforts to measure tumor EPO receptor (EPOR) are limited by the promiscuity of EPOR antibodies, and concerns as to whether EPOR mRNA measurements are confounded by heterogeneity of tumor vasculature, a known EPOR source. MATERIALS AND METHODS: This study compared mRNA levels of EPOR and JAK2 in 11 breast tumor epithelial versus endothelial dissections. RESULTS: In nine tumors EPOR mRNA was 2.6 (1.2-5.7)-fold lower in the epithelial fraction, however, this reduction was less than the reduction of endothelial markers. In two tumors, EPOR mRNA was 2.9 (1.7-4.0)-fold higher in the epithelial fraction. The inter-tumor variation in EPOR levels exceeded the intra-tumor variation between fractions. Similar results were obtained for JAK2. CONCLUSION: Tumor vasculature is not the sole source of EPOR and JAK2, and tumors can be segregated by EPOR and JAK2 levels for correlative analysis with clinical outcomes.


Assuntos
Neoplasias da Mama/genética , Endotélio Vascular/metabolismo , Células Epiteliais/metabolismo , Janus Quinase 2/genética , Receptores da Eritropoetina/genética , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Endotélio Vascular/patologia , Células Epiteliais/patologia , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Humanos , Janus Quinase 2/metabolismo , Lasers , Microdissecção , Pessoa de Meia-Idade , RNA Mensageiro/genética , Receptores da Eritropoetina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia
19.
ACS Med Chem Lett ; 2(2): 124-9, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900290

RESUMO

This report describes the discovery of RAD140, a potent, orally bioavailable, nonsteroidal selective androgen receptor modulator (SARM). The characterization of RAD140 in several preclinical models of anabolic androgen action is also described.

20.
Transl Oncol ; 3(3): 176-80, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20563259

RESUMO

Adverse effects of erythropoietin (EPO) on tumor progression and survival were observed in recent phase 3 oncology trials. However, mechanisms remain poorly understood. We tested the effects of exogenous EPO on murine B16F10 melanoma growth in a subcutaneous tumor transplant model, and for the first time, in a model of spontaneous tumor formation within autochthonous epithelial tissues using murine mammary tumor virus promoter polyoma virus middle T antigen (MMTV-PyMT) transgenic mice. EPO receptor (EPOR) messenger RNA (mRNA) was detectable in both B16F10 tumors and mammary tumors from MMTV-PyMT mice but was 0.12 +/- 0.02% and 1.3 +/- 0.91% of the EPOR mRNA level in murine erythroid HCD-57 cells, respectively. B16F10 tumor growth rates in mice treated for 3 weeks with 30 microg/kg per week of darbepoetin alpha, 0.41 inverse days (range, 0.05-0.69 inverse days; n = 16), were similar to tumor growth rates observed in mice treated with PBS, 0.42 inverse days (range, 0.10-0.69 inverse days; n = 17). In contrast, darbepoetin alpha raised hematocrit levels to 0.593 (maximum, 0.729) compared with 0.448 (maximum, 0.532) in PBS-treated mice (P = .0004). In MMTV-PyMT mice, the weights of tumor-bearing mammary glands in mice treated for 6 weeks with 30 microg/kg per week of darbepoetin alpha, 3.37 g (range, 1.94-5.81 g; n = 27), did not significantly differ from the weights in PBS-treated mice, 3.76 g (range, 2.30-6.33 g; n = 26). In contrast, darbepoetin alpha raised hematocrit levels to 0.441 (maximum, 0.606) compared with 0.405 (maximum, 0.492) in PBS-treated mice (P = .05). Thus, effects of exogenous EPO on tumor growth were not recapitulated in these murine tumor models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA