Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 10(12): 7707-7713, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31746877

RESUMO

Berry fruits contain a variety of bioactive polyphenolic compounds that exhibit potent antioxidant and anti-inflammatory activities. We have shown that consumption of freeze-dried whole berry powder, equivalent to 1 cup per day of blueberry (BB) or 2 cups per day of strawberry (SB), can differentially improve some aspects of cognition in healthy, older adults, compared to placebo-supplemented controls. We investigated whether fasting and postprandial serum from BB- or SB-supplemented older adults (60-75 years), taken at baseline or after 45 or 90 days of supplementation, would reduce the production of inflammatory and oxidative stress markers compared to serum from a placebo group, in LPS-stressed HAPI rat microglial cells, in vitro. Serum from both BB- and SB-supplemented participants reduced nitrite production, iNOS and COX-2 expression, and TNF-alpha release relative to serum from placebo controls (p < 0.05). Protection was greatest with serum from the 90-day time-point, suggesting that ongoing supplementation may provide the most health benefits. Serum was protective in both fasted and postprandial conditions, indicating that the effects are not only acute and that the meal did not challenge subjects' ability to regulate oxidative and inflammatory stress. These results suggest that berry metabolites, present in the circulating blood following ingestion, may be mediating the anti-inflammatory effects of dietary berry fruit.


Assuntos
Envelhecimento/sangue , Mirtilos Azuis (Planta)/metabolismo , Fragaria/metabolismo , Estresse Oxidativo , Idoso , Envelhecimento/imunologia , Animais , Método Duplo-Cego , Feminino , Frutas/metabolismo , Humanos , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/sangue , Período Pós-Prandial , Ratos , Fator de Necrose Tumoral alfa/sangue
2.
J Gerontol A Biol Sci Med Sci ; 74(7): 977-983, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30772901

RESUMO

Daily supplementation of blueberries (BBs) reverses age-related deficits in behavior in aged rats. However, it is unknown whether BB is more beneficial to one subset of the population dependent on baseline cognitive performance and inflammatory status. To examine the effect of individual differences on the efficacy of BB, aged rats (17 months old) were assessed for cognition in the radial arm water maze (RAWM) and divided into good, average, and poor performers based on navigation errors. Half of the rats in each cognitive group were then fed a control or a 2% BB diet for 8 weeks before retesting. Serum samples were collected, pre-diet and post-diet, to assess inflammation. Latency in the radial arm water maze was significantly reduced in the BB-fed poor performers (p < .05) and preserved in the BB-fed good performers. The control-fed good performers committed more working and reference memory errors in the post-test than pretest (p < .05), whereas the BB-fed good performers showed no change. An in vitro study using the serum showed that BB supplementation attenuated lipopolysaccharide (LPS)-induced nitrite and tumor necrosis factor-alpha, and cognitive performance was associated with innate anti-inflammatory capability. Therefore, consumption of BB may reverse some age-related deficits in cognition, as well as preserve function among those with intact cognitive ability.


Assuntos
Envelhecimento , Anti-Inflamatórios , Antioxidantes , Mirtilos Azuis (Planta) , Cognição , Dietoterapia/métodos , Envelhecimento/imunologia , Envelhecimento/psicologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Comportamento Animal , Cognição/efeitos dos fármacos , Cognição/fisiologia , Aprendizagem em Labirinto , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Plantas Medicinais , Ratos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
3.
Food Funct ; 9(1): 96-106, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29318244

RESUMO

Strawberries contain a wide array of nutrients and phytochemicals including polyphenols such as anthocyanins, proanthocyanidins and ellagitannins. These polyphenols are absorbed and metabolized to various phenolic metabolites/conjugates in the body, which may play a role in disease risk reduction. In the present study, we investigated the metabolic fate of strawberry polyphenols after chronic (90 days) supplementation of freeze-dried strawberry (24 g d-1, equivalent to 2 cups of fresh strawberries) vs. control powder in 19 healthy older adults. Blood samples were collected at two time-points i.e., fasting (t = 0 h) and 2 h after the breakfast meal. On days 45 and 90 breakfast also included a control or strawberry drink consistent with their treatment randomization. A total of 21 polyphenolic metabolites were quantified in plasma consisting of 3 anthocyanins/metabolites, 3 urolithin metabolites and 15 phenolic acid metabolites. Among anthocyanins/metabolite, pelargonidin glucuronide (85.7 ± 9.0 nmol L-1, t = 2 h, day 90) was present in the highest concentration. Persistent concentrations of anthocyanins/metabolites, urolithins and some phenolic acids were observed in fasting (t = 0 h) plasma samples on day 45 and 90 after strawberry drink consumption suggesting a role of enteric, enterohepatic recycling or upregulation of gut microbial and/or human metabolism of these compounds. Our results suggest that strawberry polyphenols are absorbed and extensively metabolized, and can persist in the circulation.


Assuntos
Fragaria/metabolismo , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Idoso , Jejum/sangue , Feminino , Fragaria/química , Frutas/química , Frutas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/sangue , Polifenóis/sangue
4.
Food Funct ; 8(12): 4752-4759, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29168860

RESUMO

Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination that often lead to falls, even when initiated later in life. The purpose of this study was to explore the interaction between baseline motor performance and the daily intake of raspberry required to improve/preserve motor function. Aged male F344 (17 mo) rats were tested for baseline (pre-test) balance, muscle strength, and coordination, and divided into good, average, and poor performers based on their motor composite score. Rats in each category were fed with either a control, 1%, or 2% raspberry-supplemented diet for 8 weeks and then retested (post-test). Poor performers fed with 1% or 2% raspberry had higher post-test composite scores (p < 0.05), while 2% raspberry lowered post-test composite scores in the good performers (p < 0.05), compared to control-fed rats. 1% and 2% raspberry appeared to preserve the performance of good performers and improve the performance of poor performers on plank walking (p < 0.05), while 2% raspberry improved post-test grip strength of the poor performers (p < 0.05). Additionally, rats with lower post-diet composite scores had higher levels of serum IL-1ß levels (r = -0.347, p < 0.05). These findings identified poor performers as being the most likely to benefit from daily consumption of ½-2 cups of raspberry to improve/preserve motor function. Therefore, increased raspberry consumption may reduce fall risk, extend independence, and improve quality of life in the aging population.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Atividade Motora , Rubus/metabolismo , Animais , Dieta , Feminino , Frutas/química , Frutas/metabolismo , Humanos , Masculino , Força Muscular , Desempenho Psicomotor , Qualidade de Vida , Ratos , Ratos Endogâmicos F344 , Rubus/química , Caminhada
5.
Adv Nutr ; 8(6): 804-811, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29141966

RESUMO

Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Neurogênese/fisiologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Adulto , Idoso , Encéfalo/fisiologia , Disfunção Cognitiva/fisiopatologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/fisiopatologia
6.
Nutr Neurosci ; 20(4): 238-245, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26618555

RESUMO

OBJECTIVES: The present study was carried out to determine if lyophilized açaí fruit pulp (genus, Euterpe), rich in polyphenols and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. METHODS: The diets of 19-month-old Fischer 344 rats were supplemented for 8 weeks with 2% Euterpe oleracea (EO), Euterpe precatoria (EP), or a control diet. Rats were tested in the Morris water maze and then blood serum from the rats was used to assess inflammatory responses of BV-2 microglial cells. RESULTS: After 8 weeks of dietary supplementation with 2% EO or EP, rats demonstrated improved working memory in the Morris water maze, relative to controls; however, only the EO diet improved reference memory. BV-2 microglial cells treated with blood serum collected from EO-fed rats produced less nitric oxide (NO) than control-fed rats. Serum from both EO- and EP-fed rats reduced tumor necrosis factor-alpha (TNF-α). There is a relationship between performance in the water maze and the production of NO and TNF-α by serum-treated BV-2 cells, such that serum from rats with better performance was more protective against inflammatory signaling. DISCUSSION: Protection of memory during aging by supplementation of lyophilized açaí fruit pulp added to the diet may result from its ability to influence antioxidant and anti-inflammatory signaling.


Assuntos
Cognição/efeitos dos fármacos , Euterpe/química , Microglia/efeitos dos fármacos , Fitoterapia , Preparações de Plantas/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/farmacologia , Células Cultivadas , Dieta , Suplementos Nutricionais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Microglia/citologia , Óxido Nítrico/sangue , Ratos , Ratos Endogâmicos F344 , Fator de Necrose Tumoral alfa/sangue
7.
Neurochem Int ; 89: 227-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26212523

RESUMO

Age is the greatest universal risk factor for neurodegenerative diseases. During aging, these conditions progress from minor loss of function to major disruptions in daily life, loss of independence and ultimately death. Because approximately 25% of the world population is expected to be older than age 65 by 2050, and no treatments exist to halt or reverse ongoing neurodegeneration, the need for effective prevention strategies is more pressing that ever before. A growing body of research supports the role of diet in healthy aging, particularly diets rich in bioactive phytochemical compounds. Recently, stilbenes such as resveratrol (3, 5, 4'-trans-trihydroxystilbene) and its analogue, pterostilbene, have gained a significant amount of attention for their potent antioxidant, anti-inflammatory, and anticarcinogenic properties. However, evidence for the beneficial effects of stilbenes on cerebral function is just beginning to emerge. In this review, we summarize the current knowledge on the role of resveratrol and pterostilbene in improving brain health during aging, with specific focus on antioxidant and anti-inflammatory signaling and behavioral outcomes.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Estilbenos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/psicologia , Resveratrol , Transtornos do Comportamento Social/tratamento farmacológico , Transtornos do Comportamento Social/metabolismo , Transtornos do Comportamento Social/psicologia , Estilbenos/metabolismo , Resultado do Tratamento
8.
J Nutr ; 144(4 Suppl): 561S-566S, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500933

RESUMO

Because of the combination of population growth and population aging, increases in the incidence of chronic neurodegenerative disorders have become a societal concern, both in terms of decreased quality of life and increased financial burden. Clinical manifestation of many of these disorders takes years, with the initiation of mild cognitive symptoms leading to behavioral problems, dementia and loss of motor functions, the need for assisted living, and eventual death. Lifestyle factors greatly affect the progression of cognitive decline, with high-risk behaviors including unhealthy diet, lack of exercise, smoking, and exposure to environmental toxins leading to enhanced oxidative stress and inflammation. Although there exists an urgent need to develop effective treatments for age-related cognitive decline and neurodegenerative disease, prevention strategies have been underdeveloped. Primary prevention in many of these neurodegenerative diseases could be achieved earlier in life by consuming a healthy diet, rich in antioxidant and anti-inflammatory phytochemicals, which offers one of the most effective and least expensive ways to address the crisis. English walnuts (Juglans regia L.) are rich in numerous phytochemicals, including high amounts of polyunsaturated fatty acids, and offer potential benefits to brain health. Polyphenolic compounds found in walnuts not only reduce the oxidant and inflammatory load on brain cells but also improve interneuronal signaling, increase neurogenesis, and enhance sequestration of insoluble toxic protein aggregates. Evidence for the beneficial effects of consuming a walnut-rich diet is reviewed in this article.


Assuntos
Envelhecimento , Encefalopatias/prevenção & controle , Encéfalo/fisiologia , Juglans , Doenças Neurodegenerativas/prevenção & controle , Idoso , Encefalopatias/dietoterapia , Encefalopatias/metabolismo , Humanos , Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/metabolismo
9.
Age (Dordr) ; 35(6): 2183-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23344884

RESUMO

The complex mixture of phytochemicals in fruits and vegetables provides protective health benefits, mainly through additive and/or synergistic effects. The presence of several bioactive compounds, such as polyphenols and caffeine, implicates coffee as a potential nutritional therapeutic in aging. Moderate (three to five cups a day) coffee consumption in humans is associated with a significant decrease in the risk of developing certain chronic diseases. However, the ability of coffee supplementation to improve cognitive function in aged individuals and the effect of the individual components in coffee, such as caffeine, have not been fully evaluated. We fed aged rats (19 months) one of five coffee-supplemented diets (0, 0.165, 0.275, 0.55, and 0.825% of the diet) for 8 weeks prior to motor and cognitive behavior assessment. Aged rats supplemented with a 0.55% coffee diet, equivalent to ten cups of coffee, performed better in psychomotor testing (rotarod) and in a working memory task (Morris water maze) compared to aged rats fed a control diet. A diet with 0.55% coffee appeared to be optimal. The 0.165% coffee-supplemented group (three cups) showed some improvement in reference memory performance in the Morris water maze. In a subsequent study, the effects of caffeine alone did not account for the performance improvements, showing that the neuroprotective benefits of coffee are not due to caffeine alone, but rather to other bioactive compounds in coffee. Therefore, coffee, in achievable amounts, may reduce both motor and cognitive deficits in aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Café , Transtornos Cognitivos/prevenção & controle , Cognição/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Bebidas , Estimulantes do Sistema Nervoso Central/farmacologia , Cognição/efeitos dos fármacos , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos F344
10.
Nucleic Acids Res ; 39(18): 7992-8004, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737425

RESUMO

Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.


Assuntos
Envelhecimento/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência , Alquilantes/toxicidade , Animais , Comportamento Animal , Peso Corporal , Células da Medula Óssea/efeitos dos fármacos , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Suscetibilidade a Doenças , Feminino , Instabilidade Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA