Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PNAS Nexus ; 3(6): pgae222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894876

RESUMO

S-palmitoylation, a reversible lipid post-translational modification, regulates the functions of numerous proteins. Voltage-gated sodium channels (NaVs), pivotal in action potential generation and propagation within cardiac cells and sensory neurons, can be directly or indirectly modulated by S-palmitoylation, impacting channel trafficking and function. However, the role of S-palmitoylation in modulating NaV1.7, a significant contributor to pain pathophysiology, has remained unexplored. Here, we addressed this knowledge gap by investigating if S-palmitoylation influences NaV1.7 channel function. Acyl-biotin exchange assays demonstrated that heterologously expressed NaV1.7 channels are modified by S-palmitoylation. Blocking S-palmitoylation with 2-bromopalmitate resulted in reduced NaV1.7 current density and hyperpolarized steady-state inactivation. We identified two S-palmitoylation sites within NaV1.7, both located in the second intracellular loop, which regulated different properties of the channel. Specifically, S-palmitoylation of cysteine 1126 enhanced NaV1.7 current density, while S-palmitoylation of cysteine 1152 modulated voltage-dependent inactivation. Blocking S-palmitoylation altered excitability of rat dorsal root ganglion neurons. Lastly, in human sensory neurons, NaV1.7 undergoes S-palmitoylation, and the attenuation of this post-translational modification results in alterations in the voltage-dependence of activation, leading to decreased neuronal excitability. Our data show, for the first time, that S-palmitoylation affects NaV1.7 channels, exerting regulatory control over their activity and, consequently, impacting rodent and human sensory neuron excitability. These findings provide a foundation for future pharmacological studies, potentially uncovering novel therapeutic avenues in the modulation of S-palmitoylation for NaV1.7 channels.

2.
Lancet Rheumatol ; 6(6): e339-e351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734019

RESUMO

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.


Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Hospedeiro Imunocomprometido , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , Feminino , Masculino , COVID-19/prevenção & controle , COVID-19/imunologia , Pessoa de Meia-Idade , Hospedeiro Imunocomprometido/imunologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Idoso , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Anticorpos Antivirais/sangue , Estudos Prospectivos , Imunização Secundária , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Linfócitos T/imunologia , Reino Unido , ChAdOx1 nCoV-19/imunologia
3.
J Neurointerv Surg ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418228

RESUMO

BACKGROUND: A health advisory was issued in response to a fungal meningitis outbreak linked to epidural anesthesia exposure in two plastic surgery clinics in Mexico, from January 1 to May 13, 2023. This descriptive analysis describes the neuroendovascular and neurosurgical observations and management of patients treated at a single stroke center located along the US-Mexico Border. METHODS: We conducted a retrospective chart review of fungal meningitis patients presenting between April and July 2023. RESULTS: Among the patients diagnosed with fungal meningitis (n=12), the majority (n=11) were afflicted with angio-invasive Fusarium solani. 83% received dual antifungal therapy, with 40% initiated on alternate-day intrathecal amphotericin B. Diagnostic cerebral angiography was performed on all patients, revealing aneurysms in 58% of cases, predominantly within the posterior circulation, notably the basilar artery, with a median size of 4.2 mm (IQR 3.3-4.8). Treatment strategies included flow diversion (70%) and primary coiling (14%) for aneurysms. Ventriculostomy placement was undertaken in 67% of patients, with 37.5% of these requiring conversion to ventriculoperitoneal shunts. Subarachnoid hemorrhage development was uniformly associated with 100% mortality. CONCLUSIONS: In patients presenting with Fusarium solani meningitis, weekly angiographic surveillance proved instrumental for monitoring aneurysm and vasospasm development. Conventional angiography outperformed CT angiography due to its enhanced ability to detect small aneurysms. A proactive approach to aneurysm treatment is advocated, given their elevated rupture risk. While our findings suggest the potential reversibility of angiographic vasospasm with effective antifungal treatment, we acknowledge the challenge of drawing definitive conclusions based on a limited sample size.

4.
Pain ; 165(4): 866-883, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862053

RESUMO

ABSTRACT: The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Masculino , Feminino , Humanos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação para Cima , Ratos Sprague-Dawley , Neuralgia/genética , Nervos Espinhais , Gânglios Espinais , Cisteína Endopeptidases/genética
5.
World J Pediatr Congenit Heart Surg ; 15(1): 60-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37609811

RESUMO

BACKGROUND: The arterial switch operation (ASO) is the preferred surgical procedure used to correct dextro-transposition of the great arteries. A known complication of the ASO is branch pulmonary arteries (PAs) stenosis, which may require reintervention. Our goal is to determine the frequency of reintervention after the ASO and any factors associated with reintervention. METHODS: This was a single center, retrospective study of infants who underwent the ASO from June 6, 2011 to February 21, 2021. The primary outcome was the prevalence of reintervention on the PAs following the ASO. RESULTS: Sixty-eight infants were analyzed; 9 (13%) patients had 10 reinterventions. The mean age at time of the ASO was 6.52 ± 6.63 days; weight was 3.34 ± 0.57 kg. Those with a reintervention had a longer bypass time (P = .047). Mean age at reintervention was 0.80 ± 0.72 years; mean time from the ASO to reintervention was 0.799 ± 0.717 years. Six surgical procedures, two stent placements, and four balloon angioplasties were performed on a total of 13 branch PAs. There was no increased risk for reintervention on the right versus left PA. After reintervention, there was an improvement in the minimal PA diameter and echo gradient. There were no adverse events or mortality related to the reintervention. Mean follow-up was 6.17 ± 2.94 years. CONCLUSION: The prevalence of branch PA reintervention following the ASO in our cohort was 13%. There is an association between longer cardiopulmonary bypass time and reintervention. After reintervention, there was an increase in PA diameter and a decrease in echo gradient.


Assuntos
Transposição das Grandes Artérias , Estenose de Artéria Pulmonar , Transposição dos Grandes Vasos , Lactente , Humanos , Recém-Nascido , Transposição das Grandes Artérias/efeitos adversos , Transposição das Grandes Artérias/métodos , Artéria Pulmonar/cirurgia , Transposição dos Grandes Vasos/cirurgia , Estudos Retrospectivos , Prevalência , Reoperação , Estenose de Artéria Pulmonar/epidemiologia , Estenose de Artéria Pulmonar/cirurgia , Resultado do Tratamento , Seguimentos
6.
iScience ; 26(11): 108316, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026173

RESUMO

Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.

7.
Pain ; 164(7): 1473-1488, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729125

RESUMO

ABSTRACT: Vascular endothelial growth factor A (VEGF-A) is a pronociceptive factor that causes neuronal sensitization and pain. We reported that blocking the interaction between the membrane receptor neuropilin 1 (NRP1) and VEGF-A-blocked VEGF-A-mediated sensory neuron hyperexcitability and reduced mechanical hypersensitivity in a rodent chronic neuropathic pain model. These findings identified the NRP1-VEGF-A signaling axis for therapeutic targeting of chronic pain. In an in-silico screening of approximately 480 K small molecules binding to the extracellular b1b2 pocket of NRP1, we identified 9 chemical series, with 6 compounds disrupting VEGF-A binding to NRP1. The small molecule with greatest efficacy, 4'-methyl-2'-morpholino-2-(phenylamino)-[4,5'-bipyrimidin]-6(1H)-one, designated NRP1-4, was selected for further evaluation. In cultured primary sensory neurons, VEGF-A enhanced excitability and decreased firing threshold, which was blocked by NRP1-4. In addition, NaV1.7 and CaV2.2 currents and membrane expression were potentiated by treatment with VEGF-A, and this potentiation was blocked by NRP1-4 cotreatment. Neuropilin 1-4 reduced VEGF-A-mediated increases in the frequency and amplitude of spontaneous excitatory postsynaptic currents in dorsal horn of the spinal cord. Neuropilin 1-4 did not bind to more than 300 G-protein-coupled receptors and receptors including human opioids receptors, indicating a favorable safety profile. In rats with spared nerve injury-induced neuropathic pain, intrathecal administration of NRP1-4 significantly attenuated mechanical allodynia. Intravenous treatment with NRP1-4 reversed both mechanical allodynia and thermal hyperalgesia in rats with L5/L6 spinal nerve ligation-induced neuropathic pain. Collectively, our findings show that NRP1-4 is a first-in-class compound targeting the NRP1-VEGF-A signaling axis to control voltage-gated ion channel function, neuronal excitability, and synaptic activity that curb chronic pain.


Assuntos
Dor Crônica , Neuralgia , Ratos , Humanos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Neuropilina-1/metabolismo , Neuropilina-1/uso terapêutico , Dor Crônica/complicações , Corno Dorsal da Medula Espinal/metabolismo , Células Receptoras Sensoriais/metabolismo
8.
Eur J Nutr ; 62(3): 1165-1184, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36449091

RESUMO

PURPOSE: This study determined fluid intake and physical activity behaviors among college students during the COVID-19 pandemic. METHODS: College students (n = 1014; females, 75.6%) completed an online survey during the Spring 2020 academic semester following the initial global response to the COVID-19 pandemic. Academic standing, habitation situation, and University/College responses to COVID-19 were collected. Participants completed the Godin Leisure-Time Exercise Questionnaire and a 15-item Beverage Questionnaire (BEVQ-15) to determine physical activity level and fluid intake behaviors, respectively. RESULTS: Females (1920 ± 960 mL) consumed significantly less fluid than males (2400 ± 1270 mL, p < 0.001). Living off-campus (p < 0.01) and living with a spouse/partner (p < 0.01) was associated with increased consumption of alcoholic beverages. 88.7% of participants reported being at least moderately active; however, Black/African American and Asian participants were more likely to be less active than their Caucasian/White counterparts (p < 0.05). Participants reporting no change in habitation in response to COVID-19 had a higher fluid intake (p = 0.002); however, the plain water consumption remained consistent (p = 0.116). While there was no effect of habitation or suspension of classes on physical activity levels (p > 0.05), greater self-reported physical activity was associated with greater fluid intake (std. ß = 0.091, p = 0.003). CONCLUSIONS: Fluid intake among college students during the initial response to the COVID-19 pandemic approximated current daily fluid intake recommendations. Associations between COVID-19-related disruptions (i.e., suspension of classes and changes in habitation) and increased alcohol intake are concerning and may suggest the need for the development of targeted strategies and programming to attenuate the execution of negative health-related behaviors in college students.


Assuntos
COVID-19 , Ingestão de Líquidos , Masculino , Feminino , Humanos , Estados Unidos/epidemiologia , Universidades , Pandemias , COVID-19/epidemiologia , Exercício Físico , Estudantes
9.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555623

RESUMO

Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.


Assuntos
Hepatite B , Hepatite D , Humanos , Vírus Delta da Hepatite/genética , Replicação Viral , Vírus da Hepatite B/genética , Hepatite D/epidemiologia , Antígenos de Superfície da Hepatite B/genética
10.
Cell Commun Signal ; 19(1): 100, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620169

RESUMO

BACKGROUND: Fetal cell-derived exosomes (extracellular vesicles, 40-160 nm) are communication channels that can signal parturition by inducing inflammatory changes in maternal decidua and myometrium. Little is known about maternal cell-derived exosomes and their functional roles on the fetal side. This study isolated and characterized exosomes from decidual and myometrial cells grown under normal and inflammatory/oxidative stress conditions and determined their impact on fetal membrane cells. METHODS: Decidual and myometrial cells were grown under standard culture conditions (control) or exposed for 48 h to cigarette smoke extract or tumor necrosis factor-α, as proxies for oxidative stress and inflammation, respectively. Exosomes were isolated from media (differential ultra-centrifugation followed by size exclusion chromatography), quantified (nano particle tracking analysis), and characterized in terms of their size and morphology (cryo-electron microscopy), markers (dot blot), and cargo contents (proteomics followed by bioinformatics analysis). Maternal exosomes (109/mL) were used to treat amnion epithelial cells and chorion trophoblast cells for 24 h. The exosome uptake by fetal cells (confocal microscopy) and the cytokine response (enzyme-linked immunosorbent assays for IL-6, IL-10, and TNF-α) was determined. RESULTS: Exosomes from both decidual and myometrial cells were round and expressed tetraspanins and endosomal sorting complexes required for transport (ESCRT) protein markers. The size and quantity was not different between control and treated cell exosomes. Proteomic analysis identified several common proteins in exosomes, as well as unique proteins based on cell type and treatment. Compared to control exosomes, pro-inflammatory cytokine release was higher in both amnion epithelial cell and chorion trophoblast cell media when the cells had been exposed to exosomes from decidual or myometrial cells treated with either cigarette smoke extract or tumor necrosis factor-α. In chorion trophoblast cells, anti-inflammatory IL-10 was increased by exosomes from both decidual and myometrial cells. CONCLUSION: Various pathophysiological conditions cause maternal exosomes to carry inflammatory mediators that can result in cell type dependent fetal inflammatory response. Video Abstract.


Assuntos
Doenças Fetais/genética , Interleucina-10/genética , Interleucina-6/genética , Síndrome de Resposta Inflamatória Sistêmica/genética , Fator de Necrose Tumoral alfa/genética , Córion/crescimento & desenvolvimento , Córion/metabolismo , Fumar Cigarros/efeitos adversos , Decídua/metabolismo , Decídua/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Exossomos/genética , Vesículas Extracelulares/genética , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miométrio/metabolismo , Miométrio/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Fatores de Risco , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia , Tetraspaninas/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Útero/metabolismo , Útero/patologia
11.
Stem Cell Reports ; 16(10): 2459-2472, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525378

RESUMO

The pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been attributed to its ability to enter through the membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, it has been heavily speculated that angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy may modulate SARS-CoV-2 infection. In this study, exposure of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and human endothelial cells (hECs) to SARS-CoV-2 identified significant differences in protein coding genes involved in immunity, viral response, and cardiomyocyte/endothelial structure. Specifically, transcriptome changes were identified in the tumor necrosis factor (TNF), interferon α/ß, and mitogen-activated protein kinase (MAPK) (hPSC-CMs) as well as nuclear factor kappa-B (NF-κB) (hECs) signaling pathways. However, pre-treatment of hPSC-CMs or hECs with two widely prescribed antihypertensive medications, losartan and lisinopril, did not affect the susceptibility of either cell type to SARS-CoV-2 infection. These findings demonstrate the toxic effects of SARS-CoV-2 in hPSC-CMs/hECs and, taken together with newly emerging multicenter trials, suggest that antihypertensive drug treatment alone does not alter SARS-CoV-2 infection.


Assuntos
Anti-Hipertensivos/farmacologia , Tratamento Farmacológico da COVID-19 , Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , COVID-19/genética , Células Cultivadas , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Lisinopril/farmacologia , Losartan/farmacologia , Miócitos Cardíacos/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transcriptoma/efeitos dos fármacos
12.
Biol Reprod ; 105(2): 464-480, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33962471

RESUMO

Extracellular vesicles play a crucial role in feto-maternal communication and provide an important paracrine signaling mechanism in pregnancy. We hypothesized that fetal cells-derived exosomes and microvesicles (MVs) under oxidative stress (OS) carry unique cargo and traffic through feto-maternal interface, which cause inflammation in uterine cells associated with parturition. Exosomes and MVs, from primary amnion epithelial cell (AEC) culture media under normal or OS-induced conditions, were isolated by optimized differential centrifugation method followed by characterization for size (nanoparticle tracking analyzer), shape (transmission electron microscopy), and protein markers (western blot and immunofluorescence). Cargo and canonical pathways were identified by mass spectroscopy and ingenuity pathway analysis. Myometrial, decidual, and cervical cells were treated with 1 × 107 control/OS-derived exosomes/MVs. Pro-inflammatory cytokines were measured using a Luminex assay. Statistical significance was determined by paired T-test (P < 0.05). AEC produced cup-shaped exosomes of 90-150 nm and circular MVs of 160-400 nm. CD9, heat shock protein 70, and Nanog were detected in exosomes, whereas OCT-4, human leukocyte antigen G, and calnexin were found in MVs. MVs, but not exosomes, were stained for phosphatidylserine. The protein profiles for control versus OS-derived exosomes and MVs were significantly different. Several inflammatory pathways related to OS were upregulated that were distinct between exosomes and MVs. Both OS-derived exosomes and MVs significantly increased pro-inflammatory cytokines (granulocyte-macrophage colony-stimulating factor, interleukin 6 (IL-6), and IL-8) in maternal cells compared with control (P < 0.05). Our findings suggest that fetal-derived exosomes and MVs under OS exhibited distinct characteristics and a synergistic inflammatory role in uterine cells associated with the initiation of parturition.


Assuntos
Âmnio/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Inflamação , Estresse Oxidativo , Útero/imunologia , Comunicação Celular , Células Epiteliais/metabolismo , Feminino , Humanos
13.
ACS Chem Neurosci ; 12(8): 1299-1312, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33787218

RESUMO

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.


Assuntos
COVID-19 , Neuropilina-1 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Fator A de Crescimento do Endotélio Vascular , Internalização do Vírus
14.
Int J Surg Case Rep ; 80: 105628, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33592422

RESUMO

INTRODUCTION AND IMPORTANCE: An enterocele is a true herniation of small bowel through the rectovaginal septum, most commonly occurring transvaginally. Although the prevalence of enterocele is not as low as previously thought, enteroceles manifesting transrectally or with rectal prolapse are exceedingly rare and without established surgical guidance. CASE PRESENTATION: A medically complex, oxygen-dependent patient presented with full fecal incontinence and transrectal enterocele associated with recurrent anterior rectal prolapse. This was diagnosed via defecography and repaired under regional anesthesia through an open transabdominal approach of posterior cul-de-sac obliteration, uterosacral ligament vaginal vault suspension and simplified ventral suture rectopexy. Surgical planning was determined through a multidisciplinary care-conference, with preference for an approach with minimal respiratory compromise and repair durability. Short-term, this patient has complete resolution of bulge symptoms, and improved fecal continence. CLINICAL DISCUSSION: In addition to history and examination, dynamic imaging of the pelvic floor, specifically defecography, is particularly useful in identifying enteroceles that present as a component of pelvic organ or anorectal prolapse. As there are no established standard surgical treatment approaches for these rare conditions, surgeons must consider several points prior to proceeding: the repair of the defect, the symptoms the repair targets, and repair durability. CONCLUSIONS: Complete assessment and specialist consultation should be pursued prior to surgical repair for anorectal pathology. For this patient, an open transabdominal native tissue repair under regional anesthesia was successful, emphasizing that approaches to surgical correction of such rare presentations must be individualized.

15.
Pain ; 162(1): 243-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009246

RESUMO

Global spread of severe acute respiratory syndrome coronavirus 2 continues unabated. Binding of severe acute respiratory syndrome coronavirus 2's spike protein to host angiotensin-converting enzyme 2 triggers viral entry, but other proteins may participate, including the neuropilin-1 receptor (NRP-1). Because both spike protein and vascular endothelial growth factor-A (VEGF-A)-a pronociceptive and angiogenic factor, bind NRP-1, we tested whether spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuron firing was blocked by spike protein and NRP-1 inhibitor EG00229. Pronociceptive behaviors of VEGF-A were similarly blocked through suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A "silencing" of pain through subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.


Assuntos
SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/fisiologia , Humanos , Neuropilina-1/metabolismo , Medição da Dor , SARS-CoV-2/metabolismo , Transdução de Sinais
16.
Am J Reprod Immunol ; 85(5): e13368, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33145922

RESUMO

PROBLEM: This study localized CD45+ immune cells and compared changes in their numbers between term, not in labor (TNIL) and term, labor (TL) human fetal membranes. METHOD OF STUDY: Fetal membranes (amniochorion) from normal TNIL and TL subjects were analyzed by immunohistochemistry (IHC), immunofluorescence (IF), and flow cytometry for evidence of total (CD45+ ) immune cells as well as innate immune cells (neutrophils, macrophages and NK cells) using specific markers. Fetal origin of immune cells was determined using polymerase chain reaction (PCR) for SRY gene in Y chromosome. RESULTS: CD45+ cells were localized in human fetal membranes for both TNIL and TL. A threefold increase in CD45+ cells was seen in TL fetal membranes of (7.73% ± 2.35) compared to TNIL (2.36% ± 0.78). This increase is primarily contributed by neutrophils. Macrophages and NK cells did not change in the membranes between TNIL and TL. Leukocytes of fetal origin are present in the fetal membranes. CONCLUSION: The fetal membranes without decidua contain a small proportion of immune cells. Some of these immune cells in the fetal membrane are fetal in origin. There is a moderate increase of immune cells in the fetal membranes at term labor; however, it is unclear whether this is a cause or consequence of labor. Further functional studies are needed to determine their contribution to membrane inflammation associated with parturition.


Assuntos
Membranas Extraembrionárias/citologia , Membranas Extraembrionárias/imunologia , Antígenos Comuns de Leucócito/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Feminino , Humanos , Masculino
17.
bioRxiv ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32995772

RESUMO

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.

18.
ACS Chem Neurosci ; 11(17): 2492-2505, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32693579

RESUMO

Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.


Assuntos
Proteínas do Tecido Nervoso , Doenças Neurodegenerativas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fosforilação , Processamento de Proteína Pós-Traducional
19.
Am J Reprod Immunol ; 84(3): e13282, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506769

RESUMO

PROBLEM: Fetal inflammatory signals can be propagated to maternal tissues to initiate labor via exosomes (extracellular vesicles; 30-150 nm). We tested the hypothesis that fetal membrane cells exposed to infectious and inflammatory mediators associated with preterm birth (PTB) produce exosomes with distinct protein cargo contents indicative of underlying pathobiology. METHODS OF STUDY: Fetal membrane explants (FM) as well as primary amnion epithelial (AEC) and mesenchymal cells (AMC), and chorion cells (CC) from term deliveries were maintained in normal conditions (control) or exposed to LPS 100 ng/mL or TNF-α 50 ng/mL for 48 hours. Exosomes were isolated from media by differential centrifugation and size exclusion chromatography and characterized using cryo-electron microscopy (morphology), nanoparticle tracking analysis (size and quantity), Western blot (markers), and mass spectroscopy (cargo proteins). Ingenuity pathway analysis (IPA) determined pathways indicated by differentially expressed proteins. RESULTS: Irrespective of source or treatment, exosomes were spherical, had similar size, quantities, and markers (ALIX, CD63, and CD81). However, exosome cargo proteins were different between FM and individual fetal membrane cell-derived exosomes in response to treatments. Several common proteins were seen; however, there are several unique proteins expressed by exosomes from different cell types in response to distinct stimuli indicative of unique pathways and physiological functions in cells. CONCLUSIONS: We demonstrate collective tissue and independent cell response reflected in exosomes in response to infectious and inflammatory stimuli. These cargoes determined underlying physiology and their potential in enhancing inflammation in a paracrine fashion.


Assuntos
Exossomos/imunologia , Membranas Extraembrionárias/imunologia , Inflamação/imunologia , Complicações Infecciosas na Gravidez/imunologia , Proteoma/imunologia , Adolescente , Adulto , Âmnio/citologia , Córion/citologia , Células Epiteliais , Feminino , Humanos , Mesoderma/citologia , Gravidez , Adulto Jovem
20.
Brain ; 143(1): 47-54, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802104

RESUMO

While delirium is associated with cognitive decline and dementia, there is limited evidence to support causality for this relationship. Clarification of how delirium may cause cognitive decline, perhaps through evidence of contemporaneous neuronal injury, would enhance plausibility for a causal relationship. Dose-dependence of neuronal injury with delirium severity would further enhance the biological plausibility for this relationship. We tested whether delirium is associated with neuronal injury in 114 surgical patients recruited to a prospective biomarker cohort study. Patients underwent perioperative testing for changes in neurofilament light, a neuronal injury biomarker, as well as a panel of 10 cytokines, with contemporaneous assessment of delirium severity and incidence. A subset of patients underwent preoperative MRI. Initially we confirmed prior reports that neurofilament light levels correlated with markers of neurodegeneration [hippocampal volume (ΔR2 = 0.129, P = 0.015)] and white matter changes including fractional anisotropy of white matter (ΔR2 = 0.417, P < 0.001) with similar effects on mean, axial and radial diffusivity) in our cohort and that surgery was associated with increasing neurofilament light from preoperative levels [mean difference (95% confidence interval, CI) = 0.240 (0.178, 0.301) log10 (pg/ml), P < 0.001], suggesting putative neuronal injury. Next, we tested the relationship with delirium. Neurofilament light rose more sharply in participants with delirium compared to non-sufferers [mean difference (95% CI) = 0.251 (0.136, 0.367) log10 (pg/ml), P < 0.001]. This relationship showed dose-dependence, such that neurofilament light rose proportionately to delirium severity (ΔR2 = 0.199, P < 0.001). Given that inflammation is considered an important driver of postoperative delirium, next we tested whether neurofilament light, as a potential marker of neurotoxicity, may contribute to the pathogenesis of delirium independent of inflammation. From a panel of 10 cytokines, the pro-inflammatory cytokine IL-8 exhibited a strong correlation with delirium severity (ΔR2 = 0.208, P < 0.001). Therefore, we tested whether the change in neurofilament light contributed to delirium severity independent of IL-8. Neurofilament light was independently associated with delirium severity after adjusting for the change in inflammation (ΔR2 = 0.040, P = 0.038). These data suggest delirium is associated with exaggerated increases in neurofilament light and that this putative neurotoxicity may contribute to the pathogenesis of delirium itself, independent of changes in inflammation.


Assuntos
Citocinas/sangue , Delírio/sangue , Hipocampo/diagnóstico por imagem , Proteínas de Neurofilamentos/sangue , Complicações Pós-Operatórias/sangue , Substância Branca/diagnóstico por imagem , Idoso , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Delírio/epidemiologia , Feminino , Hipocampo/patologia , Humanos , Interleucina-8/sangue , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Complicações Pós-Operatórias/epidemiologia , Período Pré-Operatório , Estudos Prospectivos , Índice de Gravidade de Doença , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA