Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 161(7): 1670-1681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142016

RESUMO

Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed, and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near-maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the central nervous system suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.


Assuntos
Transtornos de Enxaqueca , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Cefaleia/induzido quimicamente , Cefaleia/tratamento farmacológico , Humanos , Nociceptividade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Ratos
2.
Cephalalgia ; 39(7): 827-840, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582714

RESUMO

BACKGROUND: To further understand the role of pituitary adenylate cyclase-activating polypeptide 1 (PAC1) receptors in headache disorders, we mapped their expression in tissues of the trigemino-autonomic system by immunohistochemistry and in situ hybridization. METHODS: To optimize screening for monoclonal antibodies suitable for immunohistochemistry on formalin-fixed, paraffin-embedded tissues, we developed a new enzyme-linked immunosorbent assay using formalin-fixed, paraffin-embedded cells overexpressing human PAC1 receptors. 169G4.1 was selected from these studies for analysis of rat and human tissues and chimerized onto a mouse backbone to avoid human-on-human cross-reactivity. Immunoreactivity was compared to PAC1 receptor mRNA by in situ hybridization in both species. RESULTS: 169G4.1 immunoreactivity delineated neuronal cell bodies in the sphenopalatine ganglion in both rat and human, whereas no staining was detected in the trigeminal ganglion. The spinal trigeminal nucleus in both species showed immunoreactivity as especially strong in the upper laminae with both cell bodies and neuropil being labelled. No immunoreactivity was seen in either rat or human dura mater vessels. In situ hybridization in both species revealed mRNA in sphenopalatine ganglion neurons and the spinal trigeminal nucleus, a weak signal in the trigeminal nucleus and no signal in dural vessels. CONCLUSION: Taken together, these data support a role for PAC1 receptors in the trigemino-autonomic system as it relates to headache pathophysiology.


Assuntos
Gânglios Parassimpáticos/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Gânglio Trigeminal/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Cefaleia/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/análise
3.
Sci Transl Med ; 9(412)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29046435

RESUMO

In search of metabolically regulated secreted proteins, we conducted a microarray study comparing gene expression in major metabolic tissues of fed and fasted ob/ob mice and C57BL/6 mice. The array used in this study included probes for ~4000 genes annotated as potential secreted proteins. Circulating macrophage inhibitory cytokine 1 (MIC-1)/growth differentiation factor 15 (GDF15) concentrations were increased in obese mice, rats, and humans in comparison to age-matched lean controls. Adeno-associated virus-mediated overexpression of GDF15 and recombinant GDF15 treatments reduced food intake and body weight and improved metabolic profiles in various metabolic disease models in mice, rats, and obese cynomolgus monkeys. Analysis of the GDF15 crystal structure suggested that the protein is not suitable for conventional Fc fusion at the carboxyl terminus of the protein. Thus, we used a structure-guided approach to design and successfully generate several Fc fusion molecules with extended half-life and potent efficacy. Furthermore, we discovered that GDF15 delayed gastric emptying, changed food preference, and activated area postrema neurons, confirming a role for GDF15 in the gut-brain axis responsible for the regulation of body energy intake. Our work provides evidence that GDF15 Fc fusion proteins could be potential therapeutic agents for the treatment of obesity and related comorbidities.


Assuntos
Fator 15 de Diferenciação de Crescimento/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Cristalografia por Raios X , Dependovirus/metabolismo , Dieta , Preferências Alimentares , Esvaziamento Gástrico , Fator 15 de Diferenciação de Crescimento/química , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/fisiologia , Obesidade/patologia , Ratos Sprague-Dawley , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Regulação para Cima
4.
Neuroscience ; 328: 165-83, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27155150

RESUMO

Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology.


Assuntos
Artérias Meníngeas/metabolismo , Miócitos de Músculo Liso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Gânglio Trigeminal/metabolismo , Idoso , Animais , Anticorpos , Sítios de Ligação , Western Blotting , Proteína Semelhante a Receptor de Calcitonina/imunologia , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Linhagem Celular Tumoral , Dura-Máter/irrigação sanguínea , Dura-Máter/citologia , Dura-Máter/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Artérias Meníngeas/citologia , Pessoa de Meia-Idade , Transtornos de Enxaqueca/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Neuroglia/citologia , Neurônios/citologia , Proteína 1 Modificadora da Atividade de Receptores/imunologia , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/imunologia , Gânglio Trigeminal/citologia
5.
J Pharmacol Exp Ther ; 328(3): 900-11, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19098165

RESUMO

Neuropeptide Y (NPY) regulates physiological processes via receptor subtypes (Y(1), Y(2), Y(4), Y(5), and y(6)). The Y(5) receptor is well known for its role in appetite. Based on expression in the limbic system, we hypothesized that the Y(5) receptor might also modulate stress sensitivity. We identified a novel Y(5) receptor-selective antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro[1]-benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]methyl]-methanesulfonamide], that bound to cloned rat Y(5) receptors (K(i) = 1.5 nM) and antagonized NPY-evoked cAMP and calcium mobilization in vitro. Lu AA33810 (3-30 mg/kg p.o.) blocked feeding elicited by intracerebroventricular injection of the Y(5) receptor-selective agonist [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPancreatic Polypeptide in Sprague-Dawley rats. In vivo effects of Lu AA33810 were correlated with brain exposure > or = 50 ng/g and ex vivo Y(5) receptor occupancy of 22 to 95%. Lu AA33810 was subsequently evaluated in models of stress sensitivity. In Fischer 344 rats, Lu AA33810 (30 mg/kg p.o.) attenuated increases in plasma ACTH and corticosterone elicited by intracerebroventricular injection of [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPancreatic Polypeptide. In Sprague-Dawley rats subjected to the social interaction test, Lu AA33810 (3-30 mg/kg p.o.) produced anxiolytic-like effects after acute or chronic treatment. In Flinders sensitive line rats, chronic dosing of Lu AA33810 (10 mg/kg/day i.p.) produced anxiolytic-like effects in the social interaction test, plus antidepressant-like effects in the forced swim test. In Wistar rats exposed to chronic mild stress, chronic dosing of Lu AA33810 (3 and 10 mg/kg/day i.p.) produced antidepressant-like activity, i.e., normalization of stress-induced decrease in sucrose consumption. We propose that Y(5) receptors may function as part of an endogenous stress-sensing system to mediate social anxiety and reward or motivational deficits in selected rodent models.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Benzotiepinas/uso terapêutico , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Modelos Moleculares , Ratos , Ratos Endogâmicos F344 , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA