RESUMO
The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.
Assuntos
Linfócitos T CD8-Positivos , Sarcoma , Humanos , Camundongos , Animais , Coenzima A/farmacologia , Ácido Pantotênico/farmacologia , Sarcoma/tratamento farmacológico , Microambiente TumoralRESUMO
Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.
Assuntos
Coenzima A , Ácido Pantotênico , Humanos , Ácido Pantotênico/metabolismo , Coenzima A/metabolismo , Inflamação , ImunomodulaçãoRESUMO
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Assuntos
GTP Fosfo-Hidrolases , Sarcoma , Camundongos , Animais , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Cisteína/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Mamíferos/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismoRESUMO
OBJECTIVE: In the management of patients with IBD, there is a need to identify prognostic markers and druggable biological pathways to improve mucosal repair and probe the efficacy of tumour necrosis factor alpha biologics. Vnn1 is a pantetheinase that degrades pantetheine to pantothenate (vitamin B5, a precursor of coenzyme A (CoA) biosynthesis) and cysteamine. Vnn1 is overexpressed by inflamed colonocytes. We investigated its contribution to the tolerance of the intestinal mucosa to colitis-induced injury. DESIGN: We performed an RNA sequencing study on colon biopsy samples from patients with IBD stratified according to clinical severity and modalities of treatment. We generated the VIVA mouse transgenic model, which specifically overexpresses Vnn1 on intestinal epithelial cells and explored its susceptibility to colitis. We developed a pharmacological mimicry of Vnn1 overexpression by administration of Vnn1 derivatives. RESULTS: VNN1 overexpression on colonocytes correlates with IBD severity. VIVA mice are resistant to experimentally induced colitis. The pantetheinase activity of Vnn1 is cytoprotective in colon: it enhances CoA regeneration and metabolic adaptation of colonocytes; it favours microbiota-dependent production of short chain fatty acids and mostly butyrate, shown to regulate mucosal energetics and to be reduced in patients with IBD. This prohealing phenotype is recapitulated by treating control mice with the substrate (pantethine) or the products of pantetheinase activity prior to induction of colitis. In severe IBD, the protection conferred by the high induction of VNN1 might be compromised because its enzymatic activity may be limited by lack of available substrates. In addition, we identify the elevation of indoxyl sulfate in urine as a biomarker of Vnn1 overexpression, also detected in patients with IBD. CONCLUSION: The induction of Vnn1/VNN1 during colitis in mouse and human is a compensatory mechanism to reinforce the mucosal barrier. Therefore, enhancement of vitamin B5-driven metabolism should improve mucosal healing and might increase the efficacy of anti-inflammatory therapy.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Colite/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/genética , Ácidos Graxos Voláteis/metabolismo , Vitaminas , Sulfato de Dextrana , Modelos Animais de DoençasRESUMO
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Assuntos
Redes e Vias Metabólicas , Metaboloma , Sarcoma/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolômica , Sarcoma/genética , Transdução de Sinais , Transcriptoma , Microambiente TumoralRESUMO
Like other tumors, aggressive soft tissue sarcomas (STS) use glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) for growth. Given the importance of the cofactor coenzyme A (CoA) in energy metabolism, we investigated the impact of Vnn1 pantetheinase-an enzyme that degrades pantetheine into pantothenate (vitamin B5, the CoA biosynthetic precursor) and cysyteamine-on tumor growth. Using two models, we show that Vnn1+ STS remain differentiated and grow slowly, and that in patients a detectable level of VNN1 expression in STS is associated with an improved prognosis. Increasing pantetheinase activity in aggressive tumors limits their growth. Using combined approaches, we demonstrate that Vnn1 permits restoration of CoA pools, thereby maintaining OXPHOS. The simultaneous production of cysteamine limits glycolysis and release of lactate, resulting in a partial inhibition of STS growth in vitro and in vivo. We propose that the Warburg effect observed in aggressive STS is reversed by induction of Vnn1 pantetheinase and the rewiring of cellular energy metabolism by its products.
RESUMO
The membrane-bound Vanin-1 pantetheinase regulates tissue adaptation to stress. We investigated Vnn1 expression and its regulation in liver. Vnn1 is expressed by centrolobular hepatocytes. Using novel tools, we identify a soluble form of Vnn1 in mouse and human serum and show the contribution of a cysteine to its catalytic activity. We show that liver contributes to Vanin-1 secretion in serum and that PPARalpha is a limiting factor in serum Vnn1 production. Functional PPRE sites are identified in the Vnn1 promoter. These results indicate that serum Vnn1 might be a reliable reporter of PPARalpha activity in liver.
Assuntos
Amidoidrolases/sangue , Fígado/enzimologia , PPAR alfa/metabolismo , Amidoidrolases/genética , Animais , Células CACO-2 , Feminino , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/genética , Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Vanin-1 is an epithelial pantetheinase, which regulates intestinal inflammation in mouse. We investigated whether human VNN1 levels could be associated to the susceptibility to inflammatory bowel diseases (IBD) and explored the participation of PPARg to these processes. METHODS: We studied VNN1 expression in colon biopsies from IBD patients. We investigated polymorphisms in the regulatory regions of the VNN1 gene and examined their genetic association with the disease. Functional relevance of these single-nucleotide polymorphisms (SNPs) was assayed, and we tested PPARg in nuclear complexes associated with specific VNN1 polymorphic sequences. In mouse, we examined Vanin-1 expression in gut and feces during dextran sulfate sodium-induced colitis and assayed the effect of PPARg on Vanin-1 regulation. RESULTS: VNN1 is expressed by enterocytes and is upregulated in IBD. Three SNPs are statistically associated to IBD. The regions containing these SNPs specifically bind nuclear complexes and are correlated with the VNN1 transcript abundance in colon in an allele-dependent manner. One rare SNP is associated to severe ulcerative colitis with strong VNN1 and dropped PPARg levels. PPARg is involved in nuclear complexes that bound to VNN1 regulatory sites. Similarly, Vanin-1 is tightly regulated in the mouse gut in normal and colitis conditions and PPARg regulates its expression. CONCLUSIONS: VNN1 is a marker for IBD. Polymorphic positions in the VNN1 locus are direct targets for nuclear factors that might regulate the level of VNN1 in colon, and this could be linked to IBD susceptibility. It is hoped that modulating locally VNN1 expression or activity can be exploited to develop future therapeutic strategies against IBD.
Assuntos
Amidoidrolases/genética , Suscetibilidade a Doenças , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico/genética , Amidoidrolases/metabolismo , Animais , Western Blotting , Estudos de Casos e Controles , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Técnicas Imunoenzimáticas , Doenças Inflamatórias Intestinais/patologia , Camundongos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de TecidosRESUMO
BACKGROUND: Vanin-1 is an epithelial pantetheinase that provides cysteamine to tissue and regulates response to stress. Vanin-1 is expressed by enterocytes, and its absence limits intestinal epithelial cell production of proinflammatory signals. A link between chronic active inflammation and cancer is illustrated in patients with ulcerative colitis, who have an augmented risk of developing colorectal cancer. Indeed, sustained inflammation provides advantageous growth conditions to tumors. We examined whether epithelial cells affect tumorigenesis through vanin-1-dependent modulation of colonic inflammation. METHODS: To vanin-1(-/-) mice, we applied the colitis-associated cancer (CAC) protocol, which combines injection of azoxymethane (AOM) with repeated administrations of dextran sodium sulfate (DSS). We numbered tumors and quantified macrophage infiltration and molecular markers of cell death and proliferation. We also tested DSS-induced colitis. We scored survival, tissue damages, proinflammatory cytokine production, and tissue regeneration. Finally, we explored activation pathways by biochemical analysis on purified colonic epithelial cells (CECs) and in situ immunofluorescence. RESULTS: Vanin-1(-/-) mice displayed a drastically reduced incidence of colorectal cancer in the CAC protocol and manifested mild clinical signs of DSS-induced colitis. The early impact of vanin-1 deficiency on tumor induction was directly correlated to the amount of inflammation and subsequent epithelial proliferation rather than cell death rate; all this was linked to the modulation of NF-kappaB pathway activation in CECs. CONCLUSIONS: These results emphasize the importance of the intestinal epithelium in the control of mucosal inflammation acting as a cofactor in carcinogenesis. This might lead to novel anti-inflammatory strategies useful in cancer therapy.
Assuntos
Moléculas de Adesão Celular/fisiologia , Colite/patologia , Neoplasias do Colo/etiologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Inflamação/patologia , Amidoidrolases , Animais , Azoximetano/toxicidade , Western Blotting , Carcinógenos/toxicidade , Colite/induzido quimicamente , Colite/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Imunofluorescência , Proteínas Ligadas por GPI , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Thymic dendritic cells (DC) and epithelial cells play a major role in central tolerance but their respective roles are still controversial. Epithelial cells have the unique ability to ectopically express peripheral tissue-restricted antigens conferring self-tolerance to tissues. Paradoxically, while negative selection seems to occur for some of these antigens, epithelial cells, contrary to DC, are poor negative selectors. Using a thymic epithelial cell line, we show the functional intercellular transfer of membrane material, including MHC molecules, occurring between epithelial cells. Using somatic and bone marrow chimeras, we show that this transfer occurs efficiently in vivo between epithelial cells and, in a polarized fashion, from epithelial to DC. This novel mode of transfer of MHC-associated, epithelial cell-derived self-antigens onto DC might participate to the process of negative selection in the thymic medulla.
Assuntos
Transporte Biológico/imunologia , Comunicação Celular/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Timo/citologia , Amidoidrolases/metabolismo , Animais , Antígenos/imunologia , Antígenos/metabolismo , Antígenos de Neoplasias/análise , Transplante de Medula Óssea , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Quimera/genética , Quimera/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Molécula de Adesão da Célula Epitelial , Células Epiteliais/citologia , Células Epiteliais/imunologia , Corantes Fluorescentes/metabolismo , Proteínas Ligadas por GPI , Antígenos H-2/genética , Antígenos H-2/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Pseudópodes/imunologia , Pseudópodes/metabolismo , Linfócitos T/imunologia , Timo/imunologiaRESUMO
Colitis involves immune cell-mediated tissue injuries, but the contribution of epithelial cells remains largely unclear. Vanin-1 is an epithelial ectoenzyme with a pantetheinase activity that provides cysteamine/cystamine to tissue. Using the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-colitis model we show here that Vanin-1 deficiency protects from colitis. This protection is reversible by administration of cystamine or bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor (PPAR)gamma antagonist. We further demonstrate that Vanin-1, by antagonizing PPARgamma, licenses the production of inflammatory mediators by intestinal epithelial cells. We propose that Vanin-1 is an epithelial sensor of stress that exerts a dominant control over innate immune responses in tissue. Thus, the Vanin-1/pantetheinase activity might be a new target for therapeutic intervention in inflammatory bowel disease.
Assuntos
Moléculas de Adesão Celular/fisiologia , Colite/metabolismo , Células Epiteliais/metabolismo , PPAR gama/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Amidoidrolases , Animais , Compostos Benzidrílicos , Peso Corporal , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL2 , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Cistamina/farmacologia , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Proteínas Ligadas por GPI , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Análise de Sobrevida , Ácido TrinitrobenzenossulfônicoRESUMO
Currently available murine models to evaluate mesenchymal stem cell (MSC) differentiation are based on cell injection at ectopic sites such as muscle or skin. Due to the importance of environmental factors on the differentiation capacities of stem cells in vivo, we investigated whether the peculiar synovial/cartilaginous environment may influence the lineage specificity of bone morphogenetic protein (BMP)-2-engineered MSCs. To this aim, we used the C3H10T1/2-derived C9 MSCs that express BMP-2 under control of the doxycycline (Dox)-repressible promoter, Tet-Off, and showed in vitro, using the micropellet culture system that C9 MSCs kept their potential to differentiate toward chondrocytes. Implantation of C9 cells, either into the tibialis anterior muscles or into the joints of CB17-severe combined immunodeficient bg mice led to the formation of cartilage and bone filled with bone marrow as soon as day 10. However, no differentiation was observed after injection of naïve MSCs or C9 cells that were repressed to secrete BMP-2 by Dox addition. The BMP-2-induced differentiation of adult MSCs is thus independent of soluble factors present in the local environment of the synovial/cartilaginous tissues. Importantly, we demonstrated that a short-term expression of the BMP-2 growth factor is necessary and sufficient to irreversibly induce bone formation, suggesting that a stable genetic modification of MSCs is not required for stem cell-based bone/cartilage engineering.
Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Cartilagem/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Osso e Ossos/citologia , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Cartilagem/embriologia , Cartilagem/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Condrócitos/citologia , Condrócitos/metabolismo , Líquido Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Substâncias de Crescimento/metabolismo , Articulações/citologia , Articulações/crescimento & desenvolvimento , Articulações/cirurgia , Camundongos , Camundongos Endogâmicos C3H , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/cirurgia , Células NIH 3T3 , Osteogênese/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transplante de Células-TroncoRESUMO
The adeno-associated viruses (AAV) offer new perspectives for cytokine gene transfer in rheumatoid arthritis (RA) because they are nonpathogenic and allow long-term transgene expression in vivo. Moreover, the use of a tetracycline-inducible promoter allows regulation of therapeutic gene expression. This study assessed the potential long-term gene regulation of a recombinant AAV vector expressing viral interleukin-10 (vIL-10) in human rheumatoid synovium and the therapeutic efficiency in a mouse model of RA. We constructed a recombinant AAV vector in which the transcription of vIL-10 cDNA is controlled by the TetON system. Transduction of human primary RA synovial cells with AAV-tetON-vIL10 conferred in vitro controlled vIL-10 expression. After intramuscular injection, both incidence and severity of collagen-induced arthritis were significantly reduced at macroscopic, radiological, and histological levels in the group of DBA1 mice treated with AAV-TetON-vIL10 vector plus doxycycline after immunization and boosting compared to control groups. When coinjecting two separate AAV vectors, one encoding the inducible vIL-10 and the other the transcriptional activator, a 10 times excess of the transactivator vector dose allowed efficient control of vIL-10 secretion by doxycycline administration or withdrawal, over an 8-week period. Our results supported, for the first time, the utility of AAV-tetON-vIL10 as a therapeutic tool for gene therapy in RA.