Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 4220, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760338

RESUMO

When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Neurônios , Humanos , Neurônios/metabolismo , Alelos
2.
Sci Data ; 10(1): 813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985666

RESUMO

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Assuntos
Transtornos Mentais , Humanos , Transtorno do Espectro Autista/genética , Encéfalo , Genômica , Mosaicismo , Genoma Humano , Transtornos Mentais/genética
3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945473

RESUMO

When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons have been limited by relatively small sample sizes. Here, we developed an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We applied this approach to 2,125 frontal cortical neurons from a neurotypical human brain. This approach identified 226 CNV neurons, as well as a class of CNV neurons with complex karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contained fewer, but longer, genes.

4.
Viruses ; 14(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36366450

RESUMO

Mucoepidermoid Carcinomas (MEC) represent the most common malignancies of salivary glands. Approximately 50% of all MEC cases are known to harbor CRTC1/3-MAML2 gene fusions, but the additional molecular drivers remain largely uncharacterized. Here, we sought to resolve controversy around the role of human papillomavirus (HPV) as a potential driver of mucoepidermoid carcinoma. Bioinformatics analysis was performed on 48 MEC transcriptomes. Subsequent targeted capture DNA sequencing was used to annotate HPV content and integration status in the host genome. HPV of any type was only identified in 1/48 (2%) of the MEC transcriptomes analyzed. Importantly, the one HPV16+ tumor expressed high levels of p16, had high expression of HPV16 oncogenes E6 and E7, and displayed a complex integration pattern that included breakpoints into 13 host genes including PIK3AP1, HIPI, OLFM4,SIRT1, ARAP2, TMEM161B-AS1, and EPS15L1 as well as 9 non-genic regions. In this cohort, HPV is a rare driver of MEC but may have a substantial etiologic role in cases that harbor the virus. Genetic mechanisms of host genome integration are similar to those observed in other head and neck cancers.


Assuntos
Alphapapillomavirus , Carcinoma Mucoepidermoide , Infecções por Papillomavirus , Humanos , Carcinoma Mucoepidermoide/genética , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patologia , Proteínas de Ligação a DNA/genética , Papillomaviridae/genética , Transativadores/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
5.
Clin Cancer Res ; 28(2): 350-359, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702772

RESUMO

PURPOSE: In locally advanced p16+ oropharyngeal squamous cell carcinoma (OPSCC), (i) to investigate kinetics of human papillomavirus (HPV) circulating tumor DNA (ctDNA) and association with tumor progression after chemoradiation, and (ii) to compare the predictive value of ctDNA to imaging biomarkers of MRI and FDG-PET. EXPERIMENTAL DESIGN: Serial blood samples were collected from patients with AJCC8 stage III OPSCC (n = 34) enrolled on a randomized trial: pretreatment; during chemoradiation at weeks 2, 4, and 7; and posttreatment. All patients also had dynamic-contrast-enhanced and diffusion-weighted MRI, as well as FDG-PET scans pre-chemoradiation and week 2 during chemoradiation. ctDNA values were analyzed for prediction of freedom from progression (FFP), and correlations with aggressive tumor subvolumes with low blood volume (TVLBV) and low apparent diffusion coefficient (TVLADC), and metabolic tumor volume (MTV) using Cox proportional hazards model and Spearman rank correlation. RESULTS: Low pretreatment ctDNA and an early increase in ctDNA at week 2 compared with baseline were significantly associated with superior FFP (P < 0.02 and P < 0.05, respectively). At week 4 or 7, neither ctDNA counts nor clearance were significantly predictive of progression (P = 0.8). Pretreatment ctDNA values were significantly correlated with nodal TVLBV, TVLADC, and MTV pre-chemoradiation (P < 0.03), while the ctDNA values at week 2 were correlated with these imaging metrics in primary tumor. Multivariate analysis showed that ctDNA and the imaging metrics performed comparably to predict FFP. CONCLUSIONS: Early ctDNA kinetics during definitive chemoradiation may predict therapy response in stage III OPSCC.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Biomarcadores , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , DNA Tumoral Circulante/genética , Fluordesoxiglucose F18 , Humanos , Cinética , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/terapia , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
Cancer ; 127(19): 3531-3540, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160069

RESUMO

BACKGROUND: Human papillomavirus (HPV) is a well-established driver of malignant transformation at a number of sites, including head and neck, cervical, vulvar, anorectal, and penile squamous cell carcinomas; however, the impact of HPV integration into the host human genome on this process remains largely unresolved. This is due to the technical challenge of identifying HPV integration sites, which includes limitations of existing informatics approaches to discovering viral-host breakpoints from low-read-coverage sequencing data. METHODS: To overcome this limitation, the authors developed SearcHPV, a new HPV detection pipeline based on targeted capture technology, and applied the algorithm to targeted capture data. They performed an integrated analysis of SearcHPV-defined breakpoints with genome-wide linked-read sequencing to identify potential HPV-related structural variations. RESULTS: Through an analysis of HPV+ models, the authors showed that SearcHPV detected HPV-host integration sites with a higher sensitivity and specificity than 2 other commonly used HPV detection callers. SearcHPV uncovered HPV integration sites adjacent to known cancer-related genes, including TP63, MYC, and TRAF2, and near regions of large structural variation. The authors further validated the junction contig assembly feature of SearcHPV, which helped to accurately identify viral-host junction breakpoint sequences. They found that viral integration occurred through a variety of DNA repair mechanisms, including nonhomologous end joining, alternative end joining, and microhomology-mediated repair. CONCLUSIONS: In summary, SearcHPV is a new optimized tool for the accurate detection of HPV-human integration sites from targeted capture DNA sequencing data.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Alphapapillomavirus/genética , DNA Viral/genética , Feminino , Genômica , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética
7.
Genome Biol ; 22(1): 92, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781308

RESUMO

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Estudos de Associação Genética , Variação Genética , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único
8.
Gigascience ; 8(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886876

RESUMO

BACKGROUND: Multiple myeloma (MM) is a hematological cancer caused by abnormal accumulation of monoclonal plasma cells in bone marrow. With the increase in treatment options, risk-adapted therapy is becoming more and more important. Survival analysis is commonly applied to study progression or other events of interest and stratify the risk of patients. RESULTS: In this study, we present the current state-of-the-art model for MM prognosis and the molecular biomarker set for stratification: the winning algorithm in the 2017 Multiple Myeloma DREAM Challenge, Sub-Challenge 3. Specifically, we built a non-parametric complete hazard ranking model to map the right-censored data into a linear space, where commonplace machine learning techniques, such as Gaussian process regression and random forests, can play their roles. Our model integrated both the gene expression profile and clinical features to predict the progression of MM. Compared with conventional models, such as Cox model and random survival forests, our model achieved higher accuracy in 3 within-cohort predictions. In addition, it showed robust predictive power in cross-cohort validations. Key molecular signatures related to MM progression were identified from our model, which may function as the core determinants of MM progression and provide important guidance for future research and clinical practice. Functional enrichment analysis and mammalian gene-gene interaction network revealed crucial biological processes and pathways involved in MM progression. The model is dockerized and publicly available at https://www.synapse.org/#!Synapse:syn11459638. Both data and reproducible code are included in the docker. CONCLUSIONS: We present the current state-of-the-art prognostic model for MM integrating gene expression and clinical features validated in an independent test set.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Idoso , Algoritmos , Estudos de Coortes , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Prognóstico , Análise de Sobrevida
9.
Proc Natl Acad Sci U S A ; 116(41): 20612-20622, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548405

RESUMO

Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5'-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2',3'-cyclic phosphate to L1 RNAs containing a 5'-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias/genética , Células-Tronco Neurais/metabolismo , RNA Nuclear Pequeno/genética , RNA/genética , Retroelementos/genética , Células HeLa , Humanos , Pseudogenes , RNA/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Nuclear Pequeno/química
10.
BMC Genomics ; 20(1): 391, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109297

RESUMO

BACKGROUND: Upstream open reading frames (uORFs) initiate translation within mRNA 5' leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5' leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. RESULTS: Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes, including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However, CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation. CONCLUSION: This work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.


Assuntos
Diferenciação Celular/genética , Neurônios/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas , Algoritmos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Neurônios/citologia , Ribossomos/metabolismo
11.
Gastroenterology ; 156(5): 1404-1415, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578782

RESUMO

BACKGROUND & AIMS: African American and European American individuals have a similar prevalence of gastroesophageal reflux disease (GERD), yet esophageal adenocarcinoma (EAC) disproportionately affects European American individuals. We investigated whether the esophageal squamous mucosa of African American individuals has features that protect against GERD-induced damage, compared with European American individuals. METHODS: We performed transcriptional profile analysis of esophageal squamous mucosa tissues from 20 African American and 20 European American individuals (24 with no disease and 16 with Barrett's esophagus and/or EAC). We confirmed our findings in a cohort of 56 patients and analyzed DNA samples from patients to identify associated variants. Observations were validated using matched genomic sequence and expression data from lymphoblasts from the 1000 Genomes Project. A panel of esophageal samples from African American and European American subjects was used to confirm allele-related differences in protein levels. The esophageal squamous-derived cell line Het-1A and a rat esophagogastroduodenal anastomosis model for reflux-generated esophageal damage were used to investigate the effects of the DNA-damaging agent cumene-hydroperoxide (cum-OOH) and a chemopreventive cranberry proanthocyanidin (C-PAC) extract, respectively, on levels of protein and messenger RNA (mRNA). RESULTS: We found significantly higher levels of glutathione S-transferase theta 2 (GSTT2) mRNA in squamous mucosa from African American compared with European American individuals and associated these with variants within the GSTT2 locus in African American individuals. We confirmed that 2 previously identified genomic variants at the GSTT2 locus, a 37-kb deletion and a 17-bp promoter duplication, reduce expression of GSTT2 in tissues from European American individuals. The nonduplicated 17-bp promoter was more common in tissue samples from populations of African descendant. GSTT2 protected Het-1A esophageal squamous cells from cum-OOH-induced DNA damage. Addition of C-PAC increased GSTT2 expression in Het-1A cells incubated with cum-OOH and in rats with reflux-induced esophageal damage. C-PAC also reduced levels of DNA damage in reflux-exposed rat esophagi, as observed by reduced levels of phospho-H2A histone family member X. CONCLUSIONS: We found GSTT2 to protect esophageal squamous cells against DNA damage from genotoxic stress and that GSTT2 expression can be induced by C-PAC. Increased levels of GSTT2 in esophageal tissues of African American individuals might protect them from GERD-induced damage and contribute to the low incidence of EAC in this population.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Negro ou Afro-Americano/genética , Dano ao DNA , Mucosa Esofágica/enzimologia , Neoplasias Esofágicas/genética , Refluxo Gastroesofágico/genética , Glutationa Transferase/genética , População Branca/genética , Adenocarcinoma/enzimologia , Adenocarcinoma/etnologia , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/enzimologia , Esôfago de Barrett/etnologia , Esôfago de Barrett/patologia , Modelos Animais de Doenças , Mucosa Esofágica/patologia , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/etnologia , Neoplasias Esofágicas/patologia , Feminino , Refluxo Gastroesofágico/enzimologia , Refluxo Gastroesofágico/etnologia , Refluxo Gastroesofágico/patologia , Glutationa Transferase/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Fosforilação , Fatores de Proteção , Ratos Sprague-Dawley , Fatores de Risco , Estados Unidos/epidemiologia , Regulação para Cima
12.
Oncotarget ; 8(52): 89848-89866, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163793

RESUMO

Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization.

13.
Endocr Rev ; 37(6): 636-675, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27828722

RESUMO

The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.


Assuntos
Genômica/métodos , Hipopituitarismo/genética , Animais , Humanos
15.
Nat Genet ; 44(4): 390-7, S1, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388000

RESUMO

We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations.


Assuntos
Quebra Cromossômica , Reparo do DNA por Junção de Extremidades/genética , Rearranjo Gênico , Mutação em Linhagem Germinativa , Animais , Animais Geneticamente Modificados , Inversão Cromossômica , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Translocação Genética
16.
Cell ; 141(7): 1253-61, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603005

RESUMO

Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.


Assuntos
Elementos Alu , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Mutagênese , Análise de Sequência de DNA/métodos , Neoplasias Encefálicas/genética , Humanos , Neoplasias Pulmonares/genética , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA