RESUMO
Salvia officinalis L., commonly known as sage and belonging to the Lamiaceae family, is a medicinal herb indigenous to the Mediterranean region. It is celebrated for its diverse pharmacological properties and traditional uses in folk medicine, particularly in addressing hepatotoxicity. Cisplatin (Cis), a potent chemotherapeutic agent widely employed in cancer treatment, is recognized for its efficacy but often accompanied by adverse effects, including hepatotoxicity. The aim of this study was to assess whether an ethanolic S. officinalis extract (ESOE) could provide protection against Cis-induced hepatotoxicity in an experimental rat model. The ESOE was prepared using standard extraction techniques, and its chemical constituents were elucidated through UPLC-ESI-MS/MS analysis, revealing the presence of bioactive compounds such as alkaloids, phenolic compounds, and flavonoids, which are associated with various therapeutic effects, including hepatoprotection. Adult male albino rats were allocated into four groups: control, ESOE (250 mg/kg), Cis (7.5 mg/kg), and ESOE (250 mg/kg) + Cis (7.5 mg/kg). The treatment duration lasted 21 days, with Cis administration on the 22nd day. Twenty-four hours post-Cis administration, blood and liver samples were collected for analysis. Cis-induced hepatotoxicity was evidenced by alterations in hematological parameters, including erythrocyte, thrombocyte, leukocyte, and lymphocyte counts, alongside elevated serum levels of liver enzymes (ALT, LDH, AST, ALP, and GGT), indicative of liver damage. Furthermore, Cis exposure resulted in increased hepatic malondialdehyde (MDA) and Nitric oxide (NO) levels, oxidative stress markers, coupled with decreased levels of reduced glutathione (GSH), a non-enzymatic antioxidant, and histopathological changes in liver tissue, characterized by necrosis and inflammation. Additionally, Cis treatment led to elevated levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), TNF-α, and IL-6, indicating oxidative stress and inflammation. Remarkably, pretreatment with ESOE ameliorated these Cis-induced hepatotoxic effects, as evidenced by improved hematological parameters, reduced liver enzyme activities, alleviated oxidative stress, and ameliorated histopathological alterations. The observed hepatoprotective effects of ESOE against Cis-induced liver injury may be attributed to its antioxidant and anti-inflammatory properties, highlighting its potential as a natural therapeutic agent in mitigating chemotherapy-associated hepatotoxicity.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cisplatino , Fígado , Estresse Oxidativo , Extratos Vegetais , Salvia officinalis , Animais , Salvia officinalis/química , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Ratos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/induzido quimicamente , Antioxidantes/farmacologia , Glutationa/metabolismoRESUMO
Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 µg/l (water), 12.37 and 9.20 µg/g/dw (sediment), and 14.27 and 11.29 µg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Praguicidas , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Rios/química , Paquistão , Humanos , Medição de Risco , Praguicidas/análise , Monitoramento Ambiental/métodos , Estações do Ano , Resíduos de Praguicidas/análise , Cyprinidae , PeixesRESUMO
The exposure of fish to heavy metals can significantly impact physiological processes and potentially lead to adverse health effects. This study assesses the effects of exposure to Cd and Pb sublethal concentrations in water on Wallagu attu. A total of 48 fish with an average body weight of 145.5 ± 26 g were distributed among three groups (control, Cd-treated, and Pb-treated) within 60 L fiberglass tanks. They were exposed to 30% sublethal concentrations of Cd and Pb for durations of 1, 15, and 30 days. Following this exposure, an assessment was conducted on metal bioaccumulation and hemato-biochemical responses. Results revealed a significantly (P < 0.05) higher concentration of heavy metals in the fish tissues of metals exposed groups than in the control. The concentration of Cd and Pb increases in fish tissues (kidney > gills > intestine) with exposure time. In most cases, the Pb-exposed group exhibited significantly (P < 0.05) higher concentrations of Pb in different tissues than the Cd-treated group. With extended exposure time, the activities of CAT and SOD show a significant decrease in both Cd and Pb-treated groups. However, the reduction in activities was more pronounced in the Cd-exposed group. On 15 and 30 days, the levels of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), and total protein (TP) decrease in groups exposed to Cd and Pb. The cortisol and glucose levels exhibit a more noticeable (P < 0.05) increase with prolonged exposure to Cd and Pb than the control group. On day 30, the survival rate decreased more in the Pb-exposed group. The findings of this study indicate that exposure to sublethal doses of Cd and Pb induces stress in Wallagu attu, resulting in rapid changes in specific hemato-biochemical parameters.
RESUMO
The goal of the current study is to achieve plant-mediated synthesis of iron oxide nanoparticles (Fe2O3 NPs). The plant extract of Saccharum arundinaceum was used as a reducing and stabilizing agent for the synthesis of Fe2O3 NPs. Different techniques such as energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy (UV-vis) were used to characterize the synthesis of Fe2O3 NPs. UV-visible spectroscopy verified the synthesis of Fe2O3 NPs using a surface plasmon resonance peak at a wavelength of 370 nm. SEM analysis specifies the spherical morphology of the synthesized nanoparticles with a size range between 30 and 70 nm. The reducing and capping materials of Fe2O3 NPs were revealed by FT-IR analysis based on functional group identification. The plant extract contained essential functional groups, such as C-H, C-O, N-H, -CH2, and -OH, that facilitate the green synthesis of Fe2O3 NPs. The EDX analysis detected the atomic percentage with the elemental composition of Fe2O3 NPs, while the XRD pattern demonstrated the crystallinity of Fe2O3 NPs. Furthermore, the synthesized Fe2O3 NPs showed potential antiglycation activity under in vitro conditions, which was confirmed by the efficient zone of inhibition on glycation of bovine serum albumin/glucose (BSA-glucose) in the order <100 < 500 < 1000 µg/mL, which revealed that Fe2O3 NPs showed significant antiglycation activity. Additionally, the cytotoxic activity against brain glioblastoma cells was assessed using the MTT assay, which exhibited diminished cytotoxic activity at concentrations lower than 300 µg/mL. Thus, we assumed that the resulting Fe2O3 NPs are a good option for use in drug delivery and cancer treatments.
RESUMO
Acetaminophen is widely used as an over-the-counter analgesic and antipyretic drug. The aim of the present study was to investigate the pro-oxidative effects of acetaminophen (300 mg/kg/day i.p.) and antioxidative effects of ß-glucan (4 mg/kg/day i.p.) and/or vitamin C (100 mg/kg/day i.p.) on the blood parameters of treated rats. After 3 days of treatment, hematological and parameters of redox status were measured. Exposure of rats to acetaminophen caused significant changes in some hematological parameters and the glutathione redox cycle, leading to an increased concentration of oxidative stress parameters and the formation of lipid peroxidation, while the activities of antioxidant enzymes were decreased. Administration of ß-glucan and/or vitamin C reduced lipid peroxidation and restored the levels of examined hematological and oxidative stress parameters and improved the activities of antioxidant enzymes. Obtained results demonstrated that acetaminophen has significant pro-oxidative effects and may disrupt redox balance in blood of rats, while the combination of ß-glucan and/or vitamin C amplified the antioxidant defense potential and exhibited a strong hematoprotective activity against acetaminophen-induced toxicity. Therefore, ß-glucan and vitamin C co-treatment may be a promising therapeutic option for the treatment of acute acetaminophen hematotoxicity.
Assuntos
Acetaminofen/toxicidade , Ácido Ascórbico/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , beta-Glucanas/farmacologia , Analgésicos não Narcóticos/toxicidade , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
The use of cisplatin in chemotherapy may provoke a deteriorating impact in many vital organs, suggesting the need for more selective derivatives and effective protective cotreatments. This study assesses the effects of three novel Pt(IV) complexes containing ethyl-, propyl- and butyl-esters of the ethylenediamine-N, N'-di-S, S- (2,2'-dibenzyl) acetic acid on liver injury markers, redox parameters, and cell morphology of female rat liver tissue in comparison to cisplatin. In addition, the study evaluates the possible protective effects of resveratrol as well. The rats were divided into ten groups and were administered intraperitoneally with a single dose of cisplatin (7.5 mg/kg) or Pt(IV) complexes (10 mg/kg) and/or resveratrol (25 mg/kg). All treatments caused changes in body weight, food intake, and liver/bw ratio. Acute treatment with novel complexes decreased the levels of TB and TP while elevated the activity of ALT, AST, GGT, ALP which subsequently indicated on the liver damage. All three complexes significantly reduced the levels of LPO, O2.-, NO2- and activity of CAT, while increasing the activity of SOD, GSH-Px, GR, GST, and level of GSH, implying that these compounds could provoke redox balance disruption in liver cells. Moreover, according to the histopathological observations, the novel Pt(IV) complexes exerted stronger hepatotoxicity than cisplatin. Possible protective effects of resveratrol were not detected and even combined with examined compounds it abolished the activity of the antioxidative system of the liver cells causing more intense toxicity. Further investigation is required to elucidate the effects of Pt-based drugs and resveratrol in the estradiol-rich environment of female rats as well their influence on male rats' tissues.
Assuntos
Platina/química , Resveratrol/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peso Corporal , Cisplatino/farmacologia , Ingestão de Alimentos , Estradiol/metabolismo , Feminino , Fígado/efeitos dos fármacos , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Fatores SexuaisRESUMO
Fenitrothion is widely used organophosphate pesticide in agriculture and health programs, but besides, it causes several toxic effects. The present study was designed to evaluate the possible protective effects of selenium (0.5mg/kg b.w.) and vitamin C (100mg/kg b.w) on altered haematological, biochemical and oxidative stress parameters in the blood of rats orally treated with fenitrothion (20mg/kg b.w) for 30days. Fenitrothion caused changes in body weight, food and water intake, and some haematological and biochemical parameters. Fenitrothion altered the glutathione redox status (GSH and GSSG) and decreased activity of antioxidant enzymes (GSH-Px, GST, SOD and CAT), leading to a lipid peroxidation. Selenium and vitamin C, by improving the activity of antioxidants, reduced oxidative stress and a lipid peroxidation, maintaining the values of examined parameters to optimal levels. Therefore, selenium and vitamin C could be useful in providing protection of exposed non-target organisms including people from fenitrothion.