Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Colloids Surf B Biointerfaces ; 237: 113820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502975

RESUMO

Here, we report the multi-photo-bioactivity of the plasmonic-nano graphitic coordinated polycaprolactone-based aligned nanofibrous scaffolds-based bionanosystem for photothermal breast and colon cancer therapies and peripheral nerve photobiomodulation. The size-optimized colloidal reduced graphene oxide (nRGO, 180 nm) nanosheets, for enhanced photothermal impact, were surface-functionalized with gold nanospheres (AuNPs) to prepare the nRGO@AuNP monodispersed nano-composite and then doped 2.0 mg of nRGO@AuNP in biocompatible and biodegradable polymer polycaprolactone (PCL) to fabricate the nRGO@AuNP-PCL (2.0 mg) plasmonic aligned nanofibrous scaffolds. More than 90% of cancer cells, breast cancer (MCF-7) as well as colon cancer (CT-26), ablated after 5 min of low NIR (808 nm) laser power (0.72 W/cm2) illumination with nRGO@AuNP-PCL (2.0 mg) aligned nanofibrous scaffolds. Besides, the nRGO@AuNP-PCL (2.0 mg) provided an extraordinary microenvironment for adhesion, nerve growth, proliferation, and differentiation of PC12 and S42 cells which mimics the natural extracellular matrix. The 2.5-fold increase in neurite length was observed with NIR illumination after 3 days whereas 1.7-fold was found without NIR illumination after 7 days in comparison to PCL (pure). The current findings will be useful to provide a new crucial approach for preparing biocompatible multifunctional composite plasmonic nanofibers as a highly efficient distinct platform for photothermal therapies and promising bioimplants to overcome the loss of sensation after cancer surgery through nerve photobiomodulation.


Assuntos
Neoplasias do Colo , Terapia com Luz de Baixa Intensidade , Nanopartículas Metálicas , Nanofibras , Humanos , Ouro/farmacologia , Fototerapia , Polímeros , Poliésteres , Alicerces Teciduais , Microambiente Tumoral
2.
Clin Transl Sci ; 17(1): e13684, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964480

RESUMO

The primary objective of this study was to investigate the factors contributing to hyperglycemic adverse events (AEs) associated with the administration of remdesivir in hospitalized patients diagnosed with coronavirus disease 2019 (COVID-19). Furthermore, the study aimed to develop a risk score model employing various machine learning approaches. A total of 1262 patients were enrolled in this investigation. The relationship between covariates and hyperglycemic AEs was assessed through logistic regression analysis. Diverse machine learning algorithms were employed for the purpose of forecasting hyperglycemia-related complications. After adjusting for covariates, individuals with a body mass index ≥23 kg/m2 , those using proton pump inhibitors, cholinergic medications, or individuals with cardiovascular diseases exhibited approximately 2.41-, 2.73-, 2.65-, and 1.97-fold higher risks of experiencing hyperglycemic AEs (95% CI 1.271-4.577, 1.223-6.081, 1.168-5.989, and 1.119-3.472, respectively). Multivariate logistic regression, elastic net, and random forest models displayed area under the receiver operating characteristic curve values of 0.65, 0.66, and 0.60, respectively (95% CI 0.572-0.719, 0.640-0.671, and 0.583-0.611, respectively). This study comprehensively explored factors associated with hyperglycemic complications arising from remdesivir administration and, concurrently, leveraged a range of machine learning methodologies to construct a risk scoring model, thereby facilitating the tailoring of individualized remdesivir treatment regimens for patients with COVID-19.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Hiperglicemia , Humanos , Tratamento Farmacológico da COVID-19 , Fatores de Risco
3.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37631013

RESUMO

Adrenal insufficiency is a rare, yet life-threatening immune-related adverse event of immune checkpoint inhibitors (ICIs). This study aimed to establish a risk scoring system for adrenal insufficiency in patients receiving anti-programmed cell death 1 (PD-1) or anti-programmed cell death-ligand 1 (PD-L1) agents. Moreover, several machine learning methods were utilized to predict such complications. This study included 209 ICI-treated patients from July 2015 to February 2021, excluding those with prior adrenal insufficiency, previous steroid therapy, or incomplete data to ensure data integrity. Patients were continuously followed up at Gyeongsang National University Hospital, with morning blood samples taken for basal cortisol level measurements, facilitating a comprehensive analysis of their adrenal insufficiency risk. Using a chi-squared test and logistic regression model, we derived the odds ratio and adjusted odds ratio (AOR) through univariate and multivariable analyses. This study utilized machine learning algorithms, such as decision trees, random forests, support vector machines (SVM), and logistic regression to predict adrenal insufficiency in patients treated with ICIs. The performance of each algorithm was evaluated using metrics like accuracy, sensitivity, specificity, precision, and the area under the receiver operating characteristic curve (AUROC), ensuring rigorous assessment and reproducibility. A risk scoring system was developed from the multivariable and machine learning analyses. In a multivariable analysis, proton pump inhibitors (PPIs) (AOR 4.5), and α-blockers (AOR 6.0) were significant risk factors for adrenal insufficiency after adjusting for confounders. Among the machine learning models, logistic regression and elastic net showed good predictions, with AUROC values of 0.75 (0.61-0.90) and 0.76 (0.64-0.89), respectively. Based on multivariable and machine learning analyses, females (1 point), age ≥ 65 (1 point), PPIs (1 point), α-blockers (2 points), and antipsychotics (3 points) were integrated into the risk scoring system. From the logistic regression curve, patients with 0, 1, 2, 4, 5, and 6 points showed approximately 1.1%, 2.8%, 7.3%, 17.6%, 36.8%, 61.3%, and 81.2% risk for adrenal insufficiency, respectively. The application of our scoring system could prove beneficial in patient assessment and clinical decision-making while administering PD-1/PD-L1 inhibitors.

4.
Antioxidants (Basel) ; 12(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37237910

RESUMO

The young leaves and shoots of V. tetrasperma are consumed daily as cooked vegetables and can provide various health benefits. The antioxidant and anti-inflammatory capacities of its total extract and fractions were accessed for the first time in this study. The bioactivities guided the separation of the active fraction (EtOAc), leading to the identification of nine flavonoid glycoside compositions from this plant for the first time. In addition, the fractions and all isolates were evaluated for their inhibition against NO and IL-8 production in LPS-stimulated RAW264.7 and HT-29 cell lines, respectively. The most active ingredient was further assayed for its inhibitory abilities to iNOS and COX-2 proteins. Indeed, its mechanisms of action modes were confirmed by Western blotting assays through the reduction in their expression levels. An in silico approach revealed the substantial binding energies of docked compounds into established complexes to verify their anti-inflammatory properties. In addition, the presence of active components in the plant was validated by an established method on the UPLC-DAD system. Our research has boosted the value of this vegetable's daily use and provided a therapeutic approach for the development of functional food products for health improvement regarding the treatment of oxidation and inflammation.

5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674719

RESUMO

Bone metastasis resulting from advanced breast cancer causes osteolysis and increases mortality in patients. Kalkitoxin (KT), a lipopeptide toxin derived from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), has an anti-metastatic effect on cancer cells. We verified that KT suppressed cancer cell migration and invasion in vitro and in animal models in the present study. We confirmed that KT suppressed osteoclast-soup-derived MDA-MB-231 cell invasion in vitro and induced osteolysis in a mouse model, possibly enhancing/inhibiting metastasis markers. Furthermore, KT inhibits CXCL5 and CXCR2 expression, suppressing the secondary growth of breast cancer cells on the bone, brain, and lungs. The breast-cancer-induced osteolysis in the mouse model further reveals that KT plays a protective role, judging by micro-computed tomography and immunohistochemistry. We report for the first time the novel suppressive effects of KT on cancer cell migration and invasion in vitro and on MDA-MB-231-induced bone loss in vivo. These results suggest that KT may be a potential therapeutic drug for the treatment of breast cancer metastasis.


Assuntos
Osteólise , Animais , Camundongos , Osteólise/metabolismo , Microtomografia por Raio-X , Osteoclastos/metabolismo , Lipídeos/farmacologia , Movimento Celular , Linhagem Celular Tumoral , Metástase Neoplásica
6.
Cell Mol Immunol ; 20(1): 94-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513810

RESUMO

Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.


Assuntos
Células da Medula Óssea , Osteoclastos , Ligante RANK , Humanos , Células da Medula Óssea/metabolismo , Diferenciação Celular , Epigênese Genética , Macrófagos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
7.
Mol Ther ; 31(2): 435-453, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184851

RESUMO

Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/ß-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.


Assuntos
Fraturas Ósseas , Osteoporose , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Osteoporose/genética , Osteoporose/terapia , Fraturas Ósseas/genética , Fraturas Ósseas/terapia , Osso e Ossos , Terapia Genética
8.
Arthritis Rheumatol ; 74(6): 948-960, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077015

RESUMO

OBJECTIVE: Hypoxia occurs in tumors, infections, and sites of inflammation, such as in the affected joints of patients with rheumatoid arthritis (RA). It alleviates inflammatory responses and increases bone resorption in inflammatory arthritis by enhancing osteoclastogenesis. The mechanism by which the hypoxia response is linked to osteoclastogenesis and inflammatory bone resorption is unclear. This study was undertaken to evaluate whether the protein lysine-specific demethylase 1 (LSD1) metabolically integrates inflammatory osteoclastogenesis and bone resorption in a state of inflammatory arthritis. METHODS: LSD1-specific inhibitors and gene silencing with small interfering RNAs were used to inhibit the expression of LSD1 in human osteoclast precursor cells derived from CD14-positive monocytes, with subsequent assessment by RNA-sequencing analysis. In experimental mouse models of arthritis, inflammatory osteolysis, or osteoporosis, features of accelerated bone loss and inflammatory osteolysis were analyzed. Furthermore, in blood samples from patients with RA, cis-acting expression quantitative trait loci (cis-eQTL) were analyzed for association with the expression of hypoxia-inducible factor 1α (HIF-1α), and associations between HIF-1α allelic variants and extent of bone erosion were evaluated. RESULTS: In human osteoclast precursor cells, RANKL induced the expression of LSD1 in a mechanistic target of rapamycin-dependent manner. Expression of LSD1 was higher in synovium from RA patients than in synovium from osteoarthritis patients. Inhibition of LSD1 in human osteoclast precursors suppressed osteoclast differentiation. Results of transcriptome analysis identified several LSD1-mediated hypoxia and cell-cycle pathways as key genetic pathways involved in human osteoclastogenesis. Furthermore, HIF-1α protein, which is rapidly degraded by the proteasome in a normoxic environment, was found to be expressed in RANKL-stimulated osteoclast precursor cells. Induction of LSD1 by RANKL stabilized the expression of HIF-1α protein, thereby promoting glycolysis, in conjunction with up-regulation of the transcription factor E2F1. Analyses of cis-eQTL revealed that higher HIF-1α expression was associated with increased bone erosion in patients with RA. Inhibition of LSD1 decreased pathologic bone resorption in mice, both in models of accelerated osteoporosis and models of arthritis and inflammatory osteolysis. CONCLUSION: LSD1 metabolically regulates osteoclastogenesis in an energy-demanding inflammatory environment. These findings provide potential new therapeutic strategies targeting osteoclasts in the management of inflammatory arthritis, including in patients with RA.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Fator de Transcrição E2F1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteólise , Osteoporose , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Hipóxia Celular , Fator de Transcrição E2F1/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/metabolismo , Osteólise/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo
9.
J Control Release ; 341: 646-660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921973

RESUMO

We report copper(II) arsenite (CuAS)-integrated polymer micelles (CuAS-PMs) as a new class of Fenton-like catalytic nanosystem that can display reactive oxygen species (ROS)-manipulating anticancer therapeutic activity. CuAS-PMs were fabricated through metal-catechol chelation-based formation of the CuAS complex on the core domain of poly (ethylene glycol)-b-poly(3,4-dihydroxy-L-phenylalanine) (PEG-PDOPA) copolymer micelles. CuAS-PMs maintained structural robustness under serum conditions. The insoluble state of the CuAS complex was effectively retained at physiological pH, whereas, at endosomal pH, the CuAS complex was ionized to release arsenite and cuprous Fenton catalysts (Cu+ ions). Upon endocytosis, CuAS-PMs simultaneously released hydrogen peroxide (H2O2)-generating arsenite and Fenton-like reaction-catalyzing Cu+ ions in cancer cells, which synergistically elevated the level of highly cytotoxic hydroxyl radicals (•OH), thereby preferentially killing cancer cells. Animal experiments demonstrated that CuAS-PMs could effectively suppress the growth of solid tumors without systemic in vivo toxicity. The design rationale of CuAS-PMs may provide a promising strategy to develop diverse oxidative stress-amplifying agents with great potential in cancer-specific therapy.


Assuntos
Antineoplásicos , Arsenitos , Nanopartículas , Animais , Antineoplásicos/química , Arsenitos/farmacologia , Cobre , Peróxido de Hidrogênio/química , Nanopartículas/química , Estresse Oxidativo
10.
Cancers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771631

RESUMO

Targets of immune checkpoint inhibitors (ICIs) regulate immune homeostasis and prevent autoimmunity by downregulating immune responses and by inhibiting T cell activation. Although ICIs are widely used in immunotherapy because of their good clinical efficacy, they can also induce autoimmune-related adverse events. Thyroid-related adverse events are frequently associated with anti-programmed cell death 1 (PD-1) or anti-programmed cell death-ligand 1 (PD-L1) agents. The present study aims to investigate the factors associated with thyroid dysfunction in patients receiving PD-1 or PD-L1 inhibitors and to develop various machine learning approaches to predict complications. A total of 187 patients were enrolled in this study. Logistic regression analysis was conducted to investigate the association between such factors and adverse events. Various machine learning methods were used to predict thyroid-related complications. After adjusting for covariates, we found that smoking history and hypertension increase the risk of thyroid dysfunction by approximately 3.7 and 4.1 times, respectively (95% confidence intervals (CIs) 1.338-10.496 and 1.478-11.332, p = 0.012 and 0.007). In contrast, patients taking opioids showed an approximately 4.0-fold lower risk of thyroid-related complications than those not taking them (95% CI 1.464-11.111, p = 0.007). Among the machine learning models, random forest showed the best prediction, with an area under the receiver operating characteristic of 0.770 (95% CI 0.648-0.883) and an area under the precision-recall of 0.510 (95%CI 0.357-0.666). Hence, this study utilized various machine learning models for prediction and showed that factors such as smoking history, hypertension, and opioids are associated with thyroid-related adverse events in cancer patients receiving PD-1/PD-L1 inhibitors.

11.
Cell Rep ; 35(11): 109264, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133930

RESUMO

MYC activates different metabolic programs in a cell-type- and cell-status-dependent manner. However, the role of MYC in inflammatory macrophages has not yet been determined. Metabolic and molecular analyses reveal that MYC, but not hypoxia inducible factor 1 (HIF1), is involved in enhancing early glycolytic flux during inflammatory macrophage polarization. Ablation of MYC decreases lactate production by regulating lactate dehydrogenase (LDH) activity and causes increased inflammatory cytokines by regulating interferon regulatory factor 4 (IRF4) in response to lipopolysaccharide. Moreover, myeloid-specific deletion of MYC and pharmacological inhibition of the MYC/LDH axis enhance inflammation and the bacterial clearance in vivo. These results elucidate the potential role of the MYC/LDH/IRF4 axis in inflammatory macrophages by connecting early glycolysis with inflammatory responses and suggest that modulating early glycolytic flux mediated by the MYC/LDH axis can be used to open avenues for the therapeutic modulation of macrophage polarization to fight against bacterial infection.


Assuntos
Glicólise , Inflamação/metabolismo , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Bactérias/metabolismo , Citocinas/biossíntese , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ácido Láctico/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/deficiência
12.
Bioengineering (Basel) ; 8(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805342

RESUMO

Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody-drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolastatin drugs during blood circulation. Herein, we rationally propose monomethylauristatin F (MMAF), a dolastatin-derived, loaded nanoparticle system composed of bombesin (BBN)-tethered ROS-responsive micelle system (BBN-PEG-PPADT) to achieve efficient anticancer therapy with targeted and efficient delivery of MMAF. The developed MMAF-loaded BBN-PEG-PPADT micelles (MMAF@BBN-PEG-PPADT) exhibited improved cellular uptake via interactions between BBN and gastrin-releasing peptide receptors on the cancer cells and the intracellular burst release of MMAF, owing to the ROS-responsive disruption, which allowed the efficient anticancer effects of MMAF in vitro. This study suggests the potential of nanoparticle systems in the delivery of dolastatin drugs.

13.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33567098

RESUMO

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteoclastos , Caracteres Sexuais , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Macrófagos , Masculino , Camundongos , Fatores de Transcrição NFATC , Osteogênese , Ligante RANK
14.
Bone Res ; 9(1): 4, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33424022

RESUMO

Osteoporosis is a metabolic bone disease with dysregulated coupling between bone resorption and bone formation, which results in decreased bone mineral density. The MEF2C locus, which encodes the transcription factor MADS box transcription enhancer factor 2, polypeptide C (MEF2C), is strongly associated with adult osteoporosis and osteoporotic fractures. Although the role of MEF2C in bone and cartilage formation by osteoblasts, osteocytes, and chondrocytes has been studied, the role of MEF2C in osteoclasts, which mediate bone resorption, remains unclear. In this study, we identified MEF2C as a positive regulator of human and mouse osteoclast differentiation. While decreased MEF2C expression resulted in diminished osteoclastogenesis, ectopic expression of MEF2C enhanced osteoclast generation. Using transcriptomic and bioinformatic approaches, we found that MEF2C promotes the RANKL-mediated induction of the transcription factors c-FOS and NFATc1, which play a key role in osteoclastogenesis. Mechanistically, MEF2C binds to FOS regulatory regions to induce c-FOS expression, leading to the activation of NFATC1 and downstream osteoclastogenesis. Inducible deletion of Mef2c in mice resulted in increased bone mass under physiological conditions and protected mice from bone erosion by diminishing osteoclast formation in K/BxN serum induced arthritis, a murine model of inflammatory arthritis. Our findings reveal direct regulation of osteoclasts by MEF2C, thus adding osteoclasts as a cell type in which altered MEF2C expression or function can contribute to pathological bone remodeling.

15.
Br J Clin Pharmacol ; 87(4): 2121-2127, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118636

RESUMO

AIMS: Asian patients are known to be more prone to bleeding complications than patients of other ethnicities. Therefore, there are possibilities of other risk factors that should be given special consideration for dosage adjustment in this specific ethnic group. This study aimed to investigate the risk factors for bleeding complications in Asian patients under appropriate edoxaban dosage regimens. METHODS: Data on patients taking proper dosages, based on the Lixiana package insert, were analysed. Univariate and multivariable analyses were conducted to evaluate associations between risk factors and bleeding outcomes. Subgroup analysis was performed on high-risk patients for bleeding complications whose edoxaban dose was reduced according to the package insert. RESULTS: In total, 346 patients were included. Among them, 32 patients experienced bleeding complications. Patients with weight ≤60 kg and with cancer showed around 3.3- and 3.4-fold increased risk of bleeding complications compared to heavier patients (>60 kg) and those without cancer, respectively. In subgroup analysis with high-risk patients who took low-dose edoxaban (15 and 30 mg), weight ≤60 kg remained a significant factor for bleeding outcomes. CONCLUSION: This study showed that weight ≤60 kg and the presence of cancers could affect bleeding complications, which occurred despite proper edoxaban treatment in Asian patients. Therefore, more strict dosage guideline could be considered in populations with high proportions of Asian ethnicities.


Assuntos
Fibrilação Atrial , Inibidores do Fator Xa , Anticoagulantes , Inibidores do Fator Xa/efeitos adversos , Humanos , Piridinas , Fatores de Risco , Tiazóis/efeitos adversos , Resultado do Tratamento
16.
Cells ; 9(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967239

RESUMO

Osteoclasts are the sole bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathogenic bone destruction such as inflammatory arthritis. Pharmacologically targeting osteoclasts has been a promising approach to alleviating bone disease, but there remains room for improvement in mitigating drug side effects and enhancing cell specificity. Recently, we demonstrated the crucial role of MYC and its downstream effectors in driving osteoclast differentiation. Despite these advances, upstream regulators of MYC have not been well defined. In this study, we identify nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor known to regulate the expression of phase II antioxidant enzymes, as a novel upstream regulator of MYC. NRF2 negatively regulates receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis through the ERK and p38 signaling-mediated suppression of MYC transcription. Furthermore, the ablation of MYC in osteoclasts reverses the enhanced osteoclast differentiation and activity in NRF2 deficiency in vivo and in vitro in addition to protecting NRF2-deficient mice from pathological bone loss in a murine model of inflammatory arthritis. Our findings indicate that this novel NRF2-MYC axis could be instrumental for the fine-tuning of osteoclast formation and provides additional ways in which osteoclasts could be therapeutically targeted to prevent pathological bone erosion.


Assuntos
Artrite Experimental/genética , Osso e Ossos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Osteoclastos/metabolismo , Osteogênese/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Exp Mol Med ; 52(8): 1239-1254, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32801364

RESUMO

Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions.


Assuntos
Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Doença , Humanos , Ligantes , Modelos Biológicos , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Transdução de Sinais
18.
Curr Opin Pharmacol ; 53: 8-17, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569976

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.


Assuntos
Osteoclastos/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Humanos
19.
Semin Immunopathol ; 41(5): 565-572, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552471

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of the bone. Defects in osteoclasts thus result in unbalanced bone remodeling, leading to numerous pathological conditions such as osteoporosis, bone metastasis, and inflammatory bone erosion. Metabolism is any process a cell utilizes to meet its energetic demand for biological functions. Along with signaling pathways and osteoclast-specific gene expression programs, osteoclast differentiation activates metabolic programs. The energy generated from metabolic reprogramming in osteoclasts not only supports the phenotypic changes from mononuclear precursor cells to multinuclear osteoclasts, but also facilitates bone resorption, a major function of terminally differentiated, mature osteoclasts. While oxidative phosphorylation is studied as a major metabolic pathway that fulfills the energy demands of osteoclasts, all metabolic pathways are closely interconnected. Therefore, it remains important to understand the various aspects of osteoclast metabolism, including the roles and effects of glycolysis, glutaminolysis, fatty acid synthesis, and fatty acid oxidation. Targeting the pathways associated with metabolic reprogramming has shown beneficial effects on pathological conditions. As a result, it is clear that a deeper understanding of metabolic regulation in osteoclasts will offer broader translational potential for the treatment of human bone disorders.


Assuntos
Reprogramação Celular , Metabolismo Energético , Osteoclastos/metabolismo , Animais , Remodelação Óssea/genética , Reabsorção Óssea , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Glicólise , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Biogênese de Organelas , Osteoclastos/citologia , Fosforilação Oxidativa , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
20.
Immunity ; 51(2): 241-257.e9, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31303399

RESUMO

Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.


Assuntos
Inflamação/metabolismo , Macrófagos/imunologia , Peritonite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatopatias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epigenômica , Feminino , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA