Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172866

RESUMO

BACKGROUND: Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE: This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS: An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS: Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS: Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.


Assuntos
Fenômenos Eletrofisiológicos , Mecanotransdução Celular , Membrana Celular , Canais Iônicos , Potenciais da Membrana
2.
Front Mol Biosci ; 8: 644557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987201

RESUMO

Enhancer RNAs (eRNAs) participate in tumor growth and immune regulation through complex signaling pathways. However, the immune-related function of the eRNA-mRNA axis in lung adenocarcinoma (LUAD) is unclear. Data on the expression of eRNAs and mRNAs were downloaded from The Cancer Genome Atlas, GEO, and UCSC Xena, including LUAD, and pan-cancer clinical data and mutational information. Immune gene files were obtained from ImmLnc and ImmPort databases. Survival indices, including relapse-free and overall survival, were analyzed using the Kaplan-Meier and log-rank methods. The level of immune cell infiltration, degree of tumor hypoxia, and tumor cell stemness characteristics were quantified using the single-sample gene set enrichment analysis algorithm. The immune infiltration score and infiltration degree were evaluated using the ESTIMATE and CIBERSORT algorithms. The tumor mutation burden and microsatellite instability were examined using the Spearman test. The LUAD-associated immune-related LINC00987/A2M axis was down-regulated in most cancer types, indicating poor survival and cancer progression. Immune cell infiltration was closely related to abnormal expression of the LINC00987/A2M axis, linking its expression to a possible evaluation of sensitivity to checkpoint inhibitors and response to chemotherapy. Abnormal expression of the LINC00987/A2M axis was characterized by heterogeneity in the degree of tumor hypoxia and stemness characteristics. The abnormal distribution of immune cells in LUAD was also verified through pan-cancer analysis. Comprehensive bioinformatic analysis showed that the LINC00987/A2M axis is a functional and effective tumor suppressor and biomarker for assessing the immune microenvironment and prognostic and therapeutic evaluations of LUAD.

3.
Small ; 15(6): e1803703, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30645056

RESUMO

Hypoxic microenvironments in the solid tumor play a negative role in radiotherapy. Holo-lactoferrin (holo-Lf) is a natural protein, which acts as a potential ligand of transferrin receptor (TfR). In this work, an anticancer drug, doxorubicin (Dox)-loaded liposome-holo-Lf nanocomposites, is developed for tumor targeting and imaging guided combined radiochemotherapy. Dox-loaded liposome-holo-Lf (Lf-Liposome-Dox) nanocomposites exhibit significant cellular uptake likely owing to the TfR receptor-mediated targeting accumulation of Lf-Liposome-Dox nanocomposites. Additionally, the nanocomposites exhibit high accumulation in the tumor site after intravenous injection as evidenced from in vivo fluorescence imaging. More importantly, it is found that the holo-Lf has the ability to catalyze the conversion of hydrogen peroxide (H2 O2 ) to oxygen for relieving the tumor hypoxic microenvironment. Photoacoustic imaging further confirms the abundant generation of oxygen in the presence of Lf-Liposome-Dox nanocomposites. Based on these findings, in vivo combined radiochemotherapy is performed using Lf-Liposome-Dox as therapeutic agent, achieving excellent cancer treatment effect. The study further promotes the potential biomedical application of holo-Lf in cancer treatment.


Assuntos
Quimiorradioterapia , Lactoferrina/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Hipóxia Tumoral , Animais , Morte Celular , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA