Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 190: 107514, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447302

RESUMO

INTRODUCTION: Breath analysis using a chemical sensor array combined with machine learning algorithms may be applicable for detecting and screening lung cancer. In this study, we examined whether perioperative breath analysis can predict the presence of lung cancer using a Membrane-type Surface stress Sensor (MSS) array and machine learning. METHODS: Patients who underwent lung cancer surgery at an academic medical center, Japan, between November 2018 and November 2019 were included. Exhaled breaths were collected just before surgery and about one month after surgery, and analyzed using an MSS array. The array had 12 channels with various receptor materials and provided 12 waveforms from a single exhaled breath sample. Boxplots of the perioperative changes in the expiratory waveforms of each channel were generated and Mann-Whitney U test were performed. An optimal lung cancer prediction model was created and validated using machine learning. RESULTS: Sixty-six patients were enrolled of whom 57 were included in the analysis. Through the comprehensive analysis of the entire dataset, a prototype model for predicting lung cancer was created from the combination of array five channels. The optimal accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 0.809, 0.830, 0.807, 0.806, and 0.812, respectively. CONCLUSION: Breath analysis with MSS and machine learning with careful control of both samples and measurement conditions provided a lung cancer prediction model, demonstrating its capacity for non-invasive screening of lung cancer.


Assuntos
Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirurgia , Expiração , Valor Preditivo dos Testes , Testes Respiratórios , Detecção Precoce de Câncer , Compostos Orgânicos Voláteis/análise
2.
Adv Mater ; 36(26): e2310105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234135

RESUMO

In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.


Assuntos
Líquidos Iônicos , Células-Tronco Mesenquimais , Alicerces Teciduais , Líquidos Iônicos/química , Humanos , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adesão Celular/efeitos dos fármacos , Água/química
3.
Biosensors (Basel) ; 12(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35448316

RESUMO

Humans, as well as other organisms, tend to recognize their surroundings by smells/odors [...].


Assuntos
Odorantes , Olfato , Humanos
4.
Sensors (Basel) ; 21(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34300482

RESUMO

The endogenous volatile organic compounds (VOCs) in exhaled breath can be promising biomarkers for various diseases including cancers. An olfactory sensor has a possibility for extracting a specific feature from collective variations of the related VOCs with a certain health condition. For this approach, it is important to establish a feasible protocol for sampling exhaled breath in practical conditions to provide reproducible signal features. Here we report a robust protocol for the breath analysis, focusing on total expiratory breath measured by a Membrane-type Surface stress Sensor (MSS), which possesses practical characteristics for artificial olfactory systems. To assess its reproducibility, 83 exhaled breath samples were collected from one subject throughout more than a year. It has been confirmed that the reduction of humidity effects on the sensing signals either by controlling the humidity of purging room air or by normalizing the signal intensities leads to reasonable reproducibility verified by statistical analyses. We have also demonstrated the applicability of the protocol for detecting a target material by discriminating exhaled breaths collected from different subjects with pre- and post-alcohol ingestion on different occasions. This simple yet reproducible protocol based on the total expiratory breath measured by the MSS olfactory sensors will contribute to exploring the possibilities of clinical applications of breath diagnostics.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis , Biomarcadores , Expiração , Humanos , Reprodutibilidade dos Testes
5.
Adv Mater ; 32(4): e1905942, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814174

RESUMO

There is a growing interest in the development of dynamic adaptive biomaterials for regulation of cellular functions. However, existing materials are limited to two-state switching of the presentation and removal of cell-adhesive bioactive motifs that cannot emulate the native extracellular matrix (ECM) in vivo with continuously adjustable characteristics. Here, tunable adaptive materials composed of a protein monolayer assembled at a liquid-liquid interface are demonstrated, which adapt dynamically to cell traction forces. An ultrastructure transition from protein monolayer to hierarchical fiber occurs through interfacial jamming. Elongated fibronectin fibers promote formation of elongated focal adhesion structures, increase focal adhesion kinase activation, and enhance neuronal differentiation of stem cells. Cell traction force results in spatial rearrangement of ECM proteins, which feeds back to alter stem cell fate. The reported biomimetic adaptive liquid interface enables dynamic control of stem cell behavior and has potential translational applications.


Assuntos
Fibronectinas/metabolismo , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/química , Fluorocarbonos/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Propriedades de Superfície
6.
Small ; 15(5): e1804640, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30624030

RESUMO

Mechanical cues of cellular microenvironments can modulate cell functions including cell spreading and differentiation. Most studies of cellular functions are performed using a solid substrate, and it is thought that cells cannot spread on fluid substrates because of rapid relaxation, which cannot resist against actomyosin-based cell contractility. Here, the spreading and growth of anchorage-dependent cells such as human mesenchymal stem cells at the liquid interface between a perfluorocarbon fluid and the culture medium are observed. It is demonstrated that a monomolecular protein nanosheet self-assembled at a fluid interface is sufficiently rigid to support cell spreading without additional treatment. Fine tuning of the packing of these proteins at the liquid interface permits tailoring of the mechanics of the protein layer, ultimately allowing for the regulation of cell spreading. The greater stiffness of the protein nanosheets triggers cell spreading, adhesion growth, and yes-associated protein nuclear translocation. Cell behavior at the fluid interface is explained within the framework of the molecular clutch model. In addition, the freestanding ultrathin protein nanosheets are extremely flexible, easily deformed, and perceived by cells as being much softer. The findings are expected to provide a new perspective for insights into cell-material interactions.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Proteínas/metabolismo , Técnicas de Cultura de Células , Fluorocarbonos/química , Adesões Focais , Humanos , Células-Tronco Mesenquimais/metabolismo
7.
Sensors (Basel) ; 18(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883390

RESUMO

Porphyrin is one of the most promising materials for realizing a practical artificial olfactory sensor system. In this study, we focus on non-substituted porphyrins—porphines—as receptor materials of nanomechanical membrane-type surface stress sensors (MSS) to investigate the effect of center metals on gas sensing. By omitting the substituents on the tetrapyrrole macrocycle of porphyrin, the peripheral interference by substituents can be avoided. Zinc, nickel, and iron were chosen for the center metals as these metalloporphines show different properties compared to free-base porphine. The present study revealed that iron insertion enhanced sensitivity to various gases, while zinc and nickel insertion led to equivalent or less sensitivity than free-base porphine. Based on the experimental results, we discuss the role of center metals for gas uptake from the view point of molecular interaction. We also report the high robustness of the iron porphine to humidity, showing the high feasibility of porphine-based nanomechanical sensor devices for practical applications in ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA