Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
In Vitro Cell Dev Biol Anim ; 60(5): 489-501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587578

RESUMO

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the ß-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Via de Sinalização Wnt , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
2.
Genes Cells ; 29(6): 503-511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531660

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Neoplasias Pancreáticas , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética
3.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156558

RESUMO

Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.


Assuntos
Técnicas Biossensoriais , Drosophila , Masculino , Animais , Drosophila/genética , Necrose , Apoptose , Espermatogênese
4.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703992

RESUMO

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

5.
Oncol Rep ; 49(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37144519

RESUMO

Ovarian cancer (OC) is a refractory cancer that shows recurrence due to the acquisition of resistance to anticancer drugs, including cisplatin. However, the molecular mechanism underlying the acquisition of cisplatin resistance by cancer cells remains largely unknown. In the present study, two sets of ovarian endometrioid carcinoma cell lines were used: The parental A2780 cell line, the OVK18 cell line, and their derived cisplatin­resistant cells. It was found that cisplatin could induce ferroptosis in these parental cells by enhancing mitochondrial membrane potential and lipid peroxidation as assessed by flow cytometric analysis, and that expression of Ferredoxin1 (Fdx1), an iron­sulfur protein localized to the mitochondria, could be upregulated in cisplatin­resistant cells in the absence of cisplatin. Intriguingly, it was shown that the siRNA­mediated depletion of Fdx1 in cisplatin­resistant cells resulted in enhanced ferroptosis by increasing the mitochondrial membrane potential and lipid peroxidation induced by cisplatin. By examining Fdx1 expression with immunohistochemical analysis in clinical specimens from patients with OC, higher expression of Fdx1 was detected in cisplatin­resistant specimens than in cisplatin­sensitive specimens. Collectively, these results indicated that Fdx1 may be a novel and suitable diagnostic/prognostic marker and therapeutic molecular target for the treatment of cisplatin­resistant OC.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Cancer Sci ; 114(2): 561-573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314076

RESUMO

Ror1 plays a crucial role in cancer progression by regulating cell proliferation and migration. Ror1 is expressed abundantly in various types of cancer cells and cancer stem-like cells. However, the molecular mechanisms regulating expression of Ror1 in these cells remain largely unknown. Ror1 and its putative ligand Wnt5a are expressed highly in malignant gliomas, especially in glioblastomas, and the extents of Ror1 expression are correlated positively with poorer prognosis in patients with gliomas. We show that Ror1 expression can be upregulated in glioblastoma cells under spheroid culture, but not adherent culture conditions. Notch and hypoxia signaling pathways have been shown to be activated in spheroid-forming glioblastoma stem-like cells (GSCs), and Ror1 expression in glioblastoma cells is indeed suppressed by inhibiting either Notch or hypoxia signaling. Meanwhile, either forced expression of the Notch intracellular domain (NICD) in or hypoxic culture of glioblastoma cells result in enhanced expression of Ror1 in the cells. Consistently, we show that both NICD and hypoxia-inducible factor 1 alpha bind to upstream regions within the Ror1 gene more efficiently in GSCs under spheroid culture conditions. Furthermore, we provide evidence indicating that binding of Wnt5a to Ror1, upregulated by Notch and hypoxia signaling pathways in GSCs, might promote their spheroid-forming ability. Collectively, these findings indicate for the first time that Notch and hypoxia signaling pathways can elicit a Wnt5a-Ror1 axis through transcriptional activation of Ror1 in glioblastoma cells, thereby promoting their stem cell-like property.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/patologia , Transdução de Sinais , Hipóxia/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
7.
J Biol Chem ; 298(7): 102090, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654143

RESUMO

Invadopodia on cancer cells play crucial roles in tumor invasion and metastasis by degrading and remodeling the surrounding extracellular matrices and driving cell migration in complex 3D environments. Previous studies have indicated that microtubules (MTs) play a crucial role in elongation of invadopodia, but not their formation, probably by regulating delivery of membrane and secretory proteins within invadopodia. However, the identity of the responsible MT-based molecular motors and their regulation has been elusive. Here, we show that KIF1C, a member of kinesin-3 family, is localized to the tips of invadopodia and is required for their elongation and the invasion of cancer cells. We also found that c-Src phosphorylates tyrosine residues within the stalk domain of KIF1C, thereby enhancing its association with tyrosine phosphatase PTPD1, that in turn activates MT-binding ability of KIF1C, probably by relieving the autoinhibitory interaction between its motor and stalk domains. These findings shed new insights into how c-Src signaling is coupled to the MT-dependent dynamic nature of invadopodia and also advance our understanding of the mechanism of KIF1C activation through release of its autoinhibition.


Assuntos
Genes src , Cinesinas , Invasividade Neoplásica , Podossomos , Linhagem Celular Tumoral , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Fosforilação , Podossomos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , Tirosina/metabolismo
8.
Front Cell Dev Biol ; 10: 891763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493090

RESUMO

The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.

9.
Genes Cells ; 27(5): 368-375, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261108

RESUMO

Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine(s) in regulating progression of gastric cancer. Here, we show that CXCL16-CXCR6 signaling is also activated in MSCs through cell-autonomous machinery, leading to upregulated expression of CCL5. We further show that CCR1 and CCR3, receptors of CCL5, are expressed on the surface of MKN45 cells, and that CCL5 secreted from MSCs promotes migration of MKN45 cells presumably via its binding to CCR1/CCR3. These data indicate that cell-autonomous CXCL16-CXCR6 signaling activated in MSCs upregulates expression of CCL5, and that subsequent activation of CCL5-CCR1/3 signaling in MKN45 cells through intercellular machinery can promote migration of MKN45 cells. Collectively, these findings postulate the presence of orchestrated chemokine signaling emanated from MSCs to regulate progression of undifferentiated gastric cancer cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Linhagem Celular Tumoral , Quimiocina CXCL16/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo
10.
Oncol Rep ; 47(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796907

RESUMO

Micropapillary adenocarcinoma of the lung is a type of cancer associated with a poor prognosis and is characterized by the presence of tumor cells with a ring­like glandular structure floating within alveolar spaces. In the present study, the association between its morphological, biochemical and immunohistochemical characteristics, and malignancy was investigated using the KU­Lu­MPPt3 cell line established from a patient with MIP adenocarcinoma. Two subpopulations of KU­Lu­MPPt3 cells, namely adhesive (AD) and clumpy and suspended (CS) cells, were prepared and subjected to DNA microarray, reverse transcription­quantitative PCR, western blot and immunostaining analyses. Protein expression patterns were compared between the cell types and their derived tissues using immunostaining. The results revealed similar protein expression patterns between the tumor cells found in the alveolar spaces and CS cells, which exhibited morphological characteristic of MIP adenocarcinoma. Based on the results of DNA microarray analysis, the present study then focused on Akt and focal adhesion kinase (FAK), which were markedly activated in the KU­Lu­MPPt3 CS and AD cells, respectively. Following KU­Lu­MPPt3 CS cell plating onto collagen­coated culture dishes, some cells exhibited a transformation of their morphology into KU­Lu­MPPt3 AD­like cells within a few days, and their Akt and FAK activities were similar to those of the AD cells. Additionally, the inhibition of Akt and FAK activities with Akt and FAK inhibitors reduced KU­Lu­MPPt3 CS cell adhesion and proliferation. Thus, the aforementioned results indicated that the phosphorylation of FAK and Akt may play a crucial role in the regulation of KU­Lu­MPPt3 CS cell adhesion and proliferation, respectively. Furthermore, the malignant potential of MIP adenocarcinoma may be attributed to these morphological and biochemical alterations in the KU­Lu­MPPt3 cells.


Assuntos
Adenocarcinoma/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Humanos
11.
Oncol Rep ; 46(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080643

RESUMO

Ror2 (receptor tyrosine kinase like orphan receptor 2) is highly expressed in various types of cancers; in the majority of these cancers, Ror2 expression is associated with more aggressive disease states. Recently, it has been reported that Ror2 is highly expressed in human papilloma virus (HPV)­positive head and neck squamous cell cancer (HNSCC) cell lines, presumably indicating that Ror2 plays a critical role in HPV­related cancers. However, the function of Ror2 in HPV­positive HNSCC is currently unknown. Here, we first examined the expression levels of Ror2 in clinical specimens from patients with HPV­negative and HPV­positive oropharyngeal squamous cell cancer (OPSCC) via immunohistochemical analysis. We found that Ror2 was expressed in both HPV­negative and HPV­positive OPSCC tissues. We then confirmed that HPV­positive HNSCC cell line, UPCI:SCC152 cells, express Ror2 higher than HPV­negative cell lines as previously reported. Suppressed expression of HPV E6/7 resulted in reduced expression levels of Ror2. We also revealed that Ror2 downregulation significantly inhibited the proliferation of UPCI:SCC152 cells without inducing apoptosis. Moreover, Ror2 knockdown decelerated G1/S phase progression and abrogated invasive migration of UPCI:SCC152 cells. These results provide strong evidence that E6 and/or E7 oncoproteins regulate the progression of HPV­positive HNSCC by upregulating Ror2 expression, suggesting that Ror2 could potentially be a novel target in HPV­related cancers.


Assuntos
Neoplasias de Cabeça e Pescoço/virologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Regulação para Cima , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteínas Repressoras/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
12.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902813

RESUMO

Oncogenes often promote cell death as well as proliferation. How oncogenes drive these diametrically opposed phenomena remains to be solved. A key question is whether cell death occurs as a response to aberrant proliferation signals or through a proliferation-independent mechanism. Here, we reveal that Src, the first identified oncogene, simultaneously drives cell proliferation and death in an obligatorily coupled manner through parallel MAPK pathways. The two MAPK pathways diverge from a lynchpin protein Slpr. A MAPK p38 drives proliferation whereas another MAPK JNK drives apoptosis independently of proliferation signals. Src-p38-induced proliferation is regulated by methionine-mediated Tor signaling. Reduction of dietary methionine uncouples the obligatory coupling of cell proliferation and death, suppressing tumorigenesis and tumor-induced lethality. Our findings provide an insight into how cells evolved to have a fail-safe mechanism that thwarts tumorigenesis by the oncogene Src. We also exemplify a diet-based approach to circumvent oncogenesis by exploiting the fail-safe mechanism.


Assuntos
Morte Celular , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Metionina/deficiência , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
13.
J Neurochem ; 156(6): 834-847, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460120

RESUMO

PRMT1, a major arginine methyltransferase, plays critical roles in transcription, DNA damage response, and cell proliferation. Although we have previously discovered the crucial roles of PRMT1 for oligodendrocyte lineage progression in the central nervous system of neural stem cell-specific PRMT1 conditional knockout (PRMT1-CKO) mice, the context of other glial cell states that may cause the hypomyelination phenotype in PRMT1-CKO mice has not been explored so far. Here, we performed RNA-seq of the neonatal cortices of PRMT1-CKO mice to reveal overall gene expression changes and show the up-regulation of inflammatory signaling which is generally mediated by astrocytes and microglia in advance of the myelination defects. In particular, qRT-PCR analyses revealed Interleukin-6 (Il-6), a major central nervous system cytokine, was dramatically increased in the PRMT1-CKO brains. The gene expression changes led to augmentation of glial fibrillary acidic protein and Vimentin protein levels in PRMT1-CKO mice, showing severe reactive astrogliosis after birth. We further show that IBA1-positive and CD68-positive activated microglia were increased in PRMT1-CKO mice, in spite of intact Prmt1 gene expression in purified microglia from the mutant mice. Our results indicate that PRMT1 loss in the neural stem cell lineage causes disruptive changes in all glial types perturbing postnatal brain development and myelination.


Assuntos
Astrócitos , Encéfalo/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Microglia , Proteína-Arginina N-Metiltransferases/genética , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Encefalite/fisiopatologia , Feminino , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Bainha de Mielina , Células-Tronco Neurais/metabolismo , Gravidez , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
14.
J Clin Invest ; 130(12): 6639-6655, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196462

RESUMO

By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic ß cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to ß cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of ß cells due to genetic (ß cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse ß cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in ß cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.


Assuntos
Cromograninas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Incretinas/farmacologia , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Animais , Cromograninas/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
15.
Cancer Sci ; 111(4): 1254-1265, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012403

RESUMO

Bone marrow-derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a-Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co-cultured MKN45 gastric cancer cells via the CXCL16-CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co-cultured MKN45 cells. We also show that MSC-derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co-injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti-CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co-injected with MSC. These results suggest that CXCL16 produced through Ror2-mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6-STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression.


Assuntos
Quimiocina CXCL16/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Animais , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL16/antagonistas & inibidores , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Ligação Proteica/genética , Receptores CXCR6/genética , Transdução de Sinais/genética , Neoplasias Gástricas/patologia , Proteína Wnt-5a/genética
16.
FASEB J ; 34(2): 3413-3428, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922321

RESUMO

Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fase G1 , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Fase S , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fator de Transcrição E2F1/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Camundongos , Células NIH 3T3 , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais
17.
J Biochem ; 167(4): 347-355, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926018

RESUMO

Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.


Assuntos
Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/metabolismo
18.
Neurosurg Rev ; 43(4): 1211-1219, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402410

RESUMO

Preoperative prediction of molecular information of lower-grade gliomas (LrGGs) helps to determine the overall treatment strategy as well as the initial surgical strategy. This study aimed to detect magnetic resonance imaging (MRI) texture parameters to predict the molecular signature of LrGGs using a commercially available software and routine MR images. Forty-three patients treated at Keio University Hospital who had World Health Organization grade II or III gliomas were included. All patients having preoperative T1- and T2-weighted, fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted (DW) images were also included. Texture analyses of T2, FLAIR, and apparent diffusion coefficient (ADC) histograms were performed using a commercially available software. Texture parameters including kurtosis, skewness, and entropy were investigated to determine any correlation with the presence or absence of isocitrate dehydrogenase (IDH) mutations, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. ADC skewness and T2 skewness were significantly associated with 1p/19q codeletion status. ADC skewness of ≥ 0.25 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 65.2%, respectively (AUC = 0.728). T2 skewness of ≥ - 0.11 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 91.3%, respectively, (AUC = 0.866). None of the texture parameters were associated with IDH mutation and MGMT promoter methylation. MRI texture analysis using a commercially available software demonstrated that T2 skewness could predict 1p/19q codeletion with high sensitivity and specificity, suggesting a clinical utility.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Imagem de Difusão por Ressonância Magnética , Feminino , Deleção de Genes , Humanos , Processamento de Imagem Assistida por Computador , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Período Pré-Operatório , Sensibilidade e Especificidade , Software , Tomografia Computadorizada por Raios X , Proteínas Supressoras de Tumor/genética
19.
J Clin Neurosci ; 72: 270-276, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31866353

RESUMO

Chronic subdural hematoma (CSDH) is a common disease in older individuals with a substantial rate of recurrence. The mechanism of CSDH recurrence remains unclear. This study aimed to detect imaging parameters that could indicate the risk for CSDH recurrence by using quantitative volumetric analysis and computed tomography (CT) texture analysis (CTTA). Clinical and imaging parameters were retrospectively investigated in 147 newly diagnosed CSDH lesions in 114 patients surgically treated at the Keio University Hospital during a 6-year period. For CT images, quantitative volumetric and texture analyses were performed. Hematoma volume, postoperative air volume, hematoma density, and texture parameters including kurtosis, skewness, and entropy were evaluated and compared with CSDH recurrence rate. Data were statistically evaluated, and a difference of p < 0.05 was considered significant. Reoperation for CSDH recurrence was required in 27 sides (18.4%) of 26 patients. Multivariate analysis showed that postoperative hematoma volume and postoperative hematoma density were independent risk factors for symptomatic CSDH recurrence that required reoperation. Postoperative hematoma volume, postoperative significant residual air, and postoperative hematoma density were also identified as independent risk factors for potential CSDH recurrence. Preoperative hematoma entropy was prone to be associated with both symptomatic and potential CSDH recurrence in univariate analysis, but not in multivariate analysis because of confounding factors. Quantitative volumetric analysis and CTTA could aid in distinguishing individuals at risk for CSDH recurrence.


Assuntos
Hematoma Subdural Crônico/cirurgia , Procedimentos Neurocirúrgicos/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Adulto , Idoso , Feminino , Hematoma Subdural Crônico/diagnóstico por imagem , Hematoma Subdural Crônico/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Reoperação/estatística & dados numéricos , Tomografia Computadorizada por Raios X
20.
Cancer Sci ; 110(10): 3340-3349, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342590

RESUMO

Aberrant activation of the MET/hepatocyte growth factor (HGF) receptor participates in the malignant behavior of cancer cells, such as invasion-metastasis and resistance to molecular targeted drugs. Many mutations in the MET extracellular region have been reported, but their significance is largely unknown. Here, we report the dysregulation of mutant MET originally found in a lung cancer patient with Val370 to Asp370 (V370D) replacement located in the extracellular SEMA domain. MET-knockout cells were prepared and reconstituted with WT-MET or V370D-MET. HGF stimulation induced MET dimerization and biological responses in cells reconstituted with WT-MET, but HGF did not induce MET dimerization and failed to induce biological responses in V370D-MET cells. The V370D mutation abrogated HGF-dependent drug resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI). Compared with WT-MET cells, V370D-MET cells showed different activation patterns in receptor tyrosine kinases upon exposure to survival/growth-stressed conditions. Surface plasmon resonance analysis indicated that affinity between the extracellular region of V370D-MET and HGF was reduced compared with that for WT-MET. Further analysis of the association between V370D-MET and the separate domains of HGF indicated that the SP domain of HGF was unchanged, but its association with the NK4 domain of HGF was mostly lost in V370D-MET. These results indicate that the V370D mutation in the MET receptor impairs the functional association with HGF and is therefore a loss-of-function mutation. This mutation may change the dependence of cancer cell growth/survival on signaling molecules, which may promote cancer cell characteristics under certain conditions.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Resistencia a Medicamentos Antineoplásicos , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA