RESUMO
STUDY DESIGN: Preclinical animal study. OBJECTIVE: Evaluate the osteoinductivity and bone regenerative capacity of BioRestore bioactive glass. SUMMARY OF BACKGROUND DATA: BioRestore is a Food and Drug Administration (FDA)-approved bone void filler that has not yet been evaluated as a bone graft extender or substitute for spine fusion. METHODS: In vitro and in vivo methods were used to compare BioRestore with other biomaterials for the capacity to promote osteodifferentiation and spinal fusion. The materials evaluated (1) absorbable collagen sponge (ACS), (2) allograft, (3) BioRestore, (4) Human Demineralized Bone Matrix (DBM), and (5) MasterGraft. For in vitro studies, rat bone marrow-derived stem cells (BMSC) were cultured on the materials in either standard or osteogenic media (SM, OM), followed by quantification of osteogenic marker genes ( Runx2, Osx, Alpl, Bglap, Spp1 ) and alkaline phosphatase (ALP) activity. Sixty female Fischer rats underwent L4-5 posterolateral fusion (PLF) with placement of 1 of 5 implants: (1) ICBG from syngeneic rats; (2) ICBG+BioRestore; (3) BioRestore alone; (4) ICBG+Allograft; or (5) ICBG+MasterGraft. Spines were harvested 8 weeks postoperatively and evaluated for bone formation and fusion via radiography, blinded manual palpation, microCT, and histology. RESULTS: After culture for 1 week, BioRestore promoted similar expression levels of Runx2 and Osx to cells grown on DBM. At the 2-week timepoint, the relative ALP activity for BioRestore-OM was significantly higher ( P <0.001) than that of ACS-OM and DBM-OM ( P <0.01) and statistically equivalent to cells grown on allograft-OM. In vivo, radiographic and microCT evaluation showed some degree of bridging bone formation in all groups tested, with the exception of BioRestore alone, which did not produce successful fusions. CONCLUSIONS: This study demonstrates the capacity of BioRestore to promote osteoinductivity in vitro. In vivo, BioRestore performed similarly to commercially available bone graft extender materials but was incapable of producing fusion as a bone graft substitute. LEVEL OF EVIDENCE: Level V.
Assuntos
Substitutos Ósseos , Osteogênese , Ratos Endogâmicos F344 , Fusão Vertebral , Animais , Fusão Vertebral/métodos , Substitutos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Feminino , Ratos , Humanos , Transplante Ósseo , Vidro/química , Materiais Biocompatíveis/farmacologiaRESUMO
STUDY DESIGN: Prospective, randomized, controlled preclinical study. OBJECTIVE: The objective of this study was to compare the host inflammatory response of our previously described hyperelastic, 3D-printed (3DP) hydroxyapatite (HA)-demineralized bone matrix (DBM) composite scaffold to the response elicited with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a preclinical rat posterolateral lumbar fusion model. SUMMARY OF BACKGROUND DATA: Our group previously found that this 3D-printed HA-DBM composite material shows promise as a bone graft substitute in a preclinical rodent model, but its safety profile had yet to be assessed. METHODS: Sixty female Sprague-Dawley rats underwent bilateral posterolateral intertransverse lumbar spinal fusion using with the following implants: 1) type I absorbable collagen sponge (ACS) alone; 2) 10âµg rhBMP-2/ACS; or 3) the 3DP HA-DBM composite scaffold (nâ=â20). The host inflammatory response was assessed using magnetic resonance imaging, while the local and circulating cytokine expression levels were evaluated by enzyme-linked immunosorbent assays at subsequent postoperative time points (Nâ=â5/time point). RESULTS: At both 2 and 5 days postoperatively, treatment with the HA-DBM scaffold produced significantly less soft tissue edema at the fusion bed site relative to rhBMP-2-treated animals as quantified on magnetic resonance imaging. At every postoperative time point evaluated, the level of soft tissue edema in HA-DBM-treated animals was comparable to that of the ACS control group. At 2âdays postoperatively, serum concentrations of tumor necrosis factor-α and macrophage chemoattractant protein-1 were significantly elevated in the rhBMP-2 treatment group relative to ACS controls, whereas these cytokines were not elevated in the HA-DBM-treated animals. CONCLUSION: The 3D-printed HA-DBM composite induces a significantly reduced host inflammatory response in a preclinical spinal fusion model relative to rhBMP-2.Level of Evidence: N/A.
Assuntos
Fusão Vertebral , Animais , Matriz Óssea , Proteína Morfogenética Óssea 2 , Transplante Ósseo , Durapatita , Feminino , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Impressão Tridimensional , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Fator de Crescimento Transformador betaRESUMO
BACKGROUND: Due to the constraints surrounding autograft bone, surgeons have turned to osteoinductive agents to augment spinal fusion. Reports of complications and questionable efficacy slowed the adoption of these alternatives. Recombinant human platelet-derived growth factor B homodimer (rhPDGF-BB) has been Food and Drug Administration (FDA)-approved (Augment) to promote fusion in other areas of orthopedics, but its characterization in spine fusion has not yet been tested. The purpose of this study is to characterize the host response to PDGF-BB in vivo. METHODS: Eighty female Fischer rats underwent L4-5 posterolateral fusion using one of four implant types: (a) iliac crest syngeneic allograft harvested from syngeneic donors, (b) ß-TCP/bovine collagen matrix (ß-TCP/Col) with sodium acetate buffer, (c) ß-TCP/Col with 0.3 mg/mL "low dose," or (d) ß-TCP/Col with 3.0 mg/mL "high dose" of rhPDGF-BB. Animals underwent magnetic resonance imaging (MRI) and serum cytokine quantification at 4, 7, 10, and 21 days, postoperatively. Tissues were processed for immunofluorescence staining for Ki67 and von Willebrand factor (vWF) to assess neovascularization. RESULTS: MRI demonstrated no differences in fluid accumulation among the four treatment groups at any of the time points. Serum cytokine analysis showed no clinically significant differences between treatment groups in 20 of the 27 cytokines. Inflammatory cytokines IFN-γ, IL-1ß, IL-18, MCP-1, MIP-1α, TNF-α were not induced by rhPDGF-BB. Histology showed no differences in cell infiltration, and Ki67 and vWF immunofluorescence staining was similar among groups. CONCLUSIONS: rhPDGF-BB delivered with a ß-TCP/Col matrix exerts no exaggerated systemic or local host inflammatory response when compared to iliac crest syngeneic allograft bone or the control carrier. rhPDGF-BB mixed with a ß-TCP/Col matrix could be a viable and safe biologic alternative to syngeneic allograft in spine fusion. Further studies need to be performed to evaluate efficacy in this setting.
RESUMO
INTRODUCTION: Local steroid administration during anterior cervical spine surgery has been shown to improve postoperative dysphagia. However, concerns over potential complications remain. This study aims to evaluate the effect of local steroid administration on bone regeneration and spine fusion in a preclinical model, as well as the impact on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a 3D culture system. MATERIALS AND METHODS: Forty-five rats underwent bilateral L4-L5 posterolateral lumbar fusion (PLF) utilizing local delivery of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2; 0.5 µg/implant). Rats were divided into three groups: no steroid (control), low dose (0.5 mg/kg), and high dose (2.5 mg/kg) of triamcinolone. Bone growth and fusion were assessed using radiography, blinded manual palpation, and micro-CT analysis and were visualized by histology. The impact of triamcinolone exposure on osteogenic differentiation of hBM-MSCs was evaluated by gene expression analysis, alkaline phosphatase activity assay, and alizarin red staining. RESULTS: No significant differences in fusion scores or rates were seen in the low- or high-dose steroid treatment groups relative to untreated controls. Quantification of new bone formation via micro-CT imaging revealed no significant between-group differences in the volume of newly regenerated bone. Triamcinolone also had no negative impact on pro-osteogenic gene transcript levels, and ALP activity was enhanced in the presence of triamcinolone. Mineral deposition appeared comparable in cultures grown with and without triamcinolone. CONCLUSIONS: Local steroid application does not seem to inhibit rhBMP-2-mediated spine fusion in rats, though our study may not be adequately powered to detect differences in fusion as measured by manual palpation or bone volume as measured by micro-CT. These findings suggest that local triamcinolone may not increase pseudarthrosis in spine fusion procedures. Further large animal and clinical studies to verify its safety and efficacy are warranted.
RESUMO
The fate of tumors depends both on the cancer cells' intrinsic characteristics and on the environmental conditions where the tumors reside and grow. Engineered in vitro models have led to significant advances in cancer research, allowing the investigation of cells in physiological environments and the study of disease mechanisms and processes with enhanced relevance. Here we present a biomimetic cancer model based on a collagen matrix synthesized through a biologically inspired process. We compared in this environment the responses of two breast tumor lineages characterized by different molecular patterns and opposite clinical behaviors: MCF-7 that belong to the luminal A subtype connected to an indolent course, and basal-like MDA-MB-231 connected to high-grade and aggressive disease. Cancer cells in the biomimetic matrix recreate a hypoxic environment that affects their growth dynamics and phenotypic features. Hypoxia induces apoptosis and the selection of aggressive cells that acquire expression signatures associated with glycolysis, angiogenesis, cell-matrix interaction, epithelial to mesenchymal transition and metastatic ability. In response to hypoxia MDA-MB-231 migrate on the collagen fibrils and undergo cellular senescence, while MCF-7 do not exhibit these behaviors. Our biomimetic model mimics the evolution of tumors with different grade of aggressiveness fostered by a hypoxic niche and provides a relevant technology to dissect the events involved in cancer progression.
Assuntos
Materiais Biomiméticos/química , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Matriz Extracelular/química , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Neoplasias da Mama/patologia , Hipóxia Celular , Feminino , Humanos , Células MCF-7RESUMO
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Assuntos
Becaplermina , Proliferação de Células/efeitos dos fármacos , Miócitos Cardíacos , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Animais , Becaplermina/química , Becaplermina/farmacocinética , Becaplermina/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Porosidade , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
PURPOSE OF REVIEW: The current review aims to provide a current landscape and future trends of biomimetic nanoparticles which have the potential to revolutionize the field of transplantation in the next decade. RECENT FINDINGS: Currently, the inability to safely induce robust donor-specific immunological tolerance makes it difficult to achieve immunosuppression-free graft survival. Despite progresses in the development of nanotherapeutics for antigen-specific immunomodulation in autoimmune diseases and in cancer treatments, few have been proposed and tested in transplantation with success. The complexity of parallel rejection mechanisms, multitude of antigen epitopes, and potential epitope spreading have challenged conventional nanodelivery systems in transplant models. Overcoming such challenges, biomimetic nanotherapeutics represent a promising alternative, as they allow better recapitulation of the complexity of the main biological players involved in tolerance. Within biomimetic nanodelivery systems, we envision that hybrid systems mimicking extracellular vesicles have the potential to bridging the gap between cell-based therapies, which are effective but costly and difficult to translate in clinical practice, and fully synthetic systems which are relatively easy to manufacture but lack the capacity to recapitulate the complexity of transplant antigens and tolerance mechanisms. SUMMARY: Next-generation nanotherapeutics for tolerance delivery is evolving toward biomimetic systems capable of capturing an increasing level of antigen complexity and exploiting multiple tolerance pathways.
Assuntos
Antígenos/imunologia , Biomimética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Fatores Imunológicos/imunologia , Nanopartículas/administração & dosagem , Tolerância ao Transplante/imunologia , Animais , Humanos , Imunomodulação , Nanopartículas/químicaRESUMO
In mammals, tissue regeneration is accomplished through a well-regulated, complex cascade of events. The disruption of the cellular and molecular processes involved in tissue healing might lead to scar formation. Most tissue engineering approaches have tried to improve the regenerative outcome following an injury, through the combination of biocompatible materials, stem cells and bioactive factors. However, implanted materials can cause further healing impairments due to the persistent inflammatory stimuli that trigger the onset of chronic inflammation. Here, it is described at the molecular, cellular and tissue level, the body response to a functionalized biomimetic collagen scaffold. The grafting of chondroitin sulfate on the surface of the scaffold is able to induce a pro-regenerative environment at the site of a subcutaneous implant. The early in situ recruitment, and sustained local retention of anti-inflammatory macrophages significantly reduced the pro-inflammatory environment and triggered a different healing cascade, ultimately leading to collagen fibril re-organization, blood vessel formation, and scaffold integration with the surrounding native tissue.
Assuntos
Materiais Biocompatíveis/química , Sulfatos de Condroitina/química , Colágeno/química , Macrófagos/imunologia , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Células Cultivadas , Citocinas , Macrófagos/citologia , Macrófagos/fisiologia , Ratos , Ratos Endogâmicos Lew , CicatrizaçãoRESUMO
A major challenge in regenerative medicine is to improve therapeutic cells' delivery and targeting using an efficient and simple protocol. Mesenchymal stem cells (MSC) are currently employed for the treatment of inflammatory-based diseases, due to their powerful immunosoppressive potential. Here we report a simple and versatile method to transiently overexpress the hyaluronic acid (HA) receptor, CD44, on MSC membranes, to improve their homing potential towards an inflammatory site without affecting their behavior. The effect of HA-coatings on murine MSC was functionally determined both, in vitro and in vivo as a consequence of the transient CD44 overexpression induced by HA. Data obtained from the in vitro migration assay demonstrated a two-fold increase in the migratory potential of HA-treated MSC compared to untreated cells. In an LPS-induced inflamed ear murine model, HA-treated MSC demonstrated a significantly higher inflammatory targeting as observed at 72 hrs as compared to untreated cells. This increased accumulation for HA-treated MSC yielded a substantial reduction in inflammation as demonstrated by the decrease in the expression of pro-inflammatory markers and by the induction of a pro-regenerative environment.
Assuntos
Movimento Celular , Ácido Hialurônico/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Cultura Primária de Células/métodos , Animais , Células Cultivadas , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Using delivery systems to control the in vivo release of growth factors (GFs) for tissue engineering applications is extremely desirable as the clinical use of GFs is limited by their fast in vivo turnover. Hence, the development of effective platforms that are able to finely control the release of GFs in vivo remains a challenge. Herein, we investigated the ability of multiscale microspheres, composed by a nanostructured silicon multistage vector (MSV) core and a poly(dl-lactide-co-glycolide) acid (PLGA) forming outer shell (PLGA-MSV), to release functional platelet-derived growth factor-BB (PDGF-BB) to induce in vivo localized neovascularization. The in vitro release of PDGF-BB was assessed by enzyme-linked immunosorbent assay (ELISA) over 2 weeks and showed a sustained, zero-order release kinetics. The ability to promote in vivo localized neovascularization was investigated in a subcutaneous injection model in BALB/c mice and followed by intravital microscopy up to 2 weeks. Fully functional newly formed vessels were found within the area where PLGA-MSVs were localized and covered 3.0 ± 0.9 and 19 ± 5.1% at 7 and 14 days, respectively, showing a 6-fold increase in 1 week. The distribution of CD31+ and α-SMA+ cells was detected by immunofluorescence on harvested tissues. CD31 was significantly more expressed (4-fold increase) compared to the untreated control. Finally, the level of up-regulation of angiogenesis-associated genes (Vegfa, Vwf, and Col3a1) was assessed by q-PCR, resulting in a significantly higher expression where PLGA-MSVs were localized (Vegfa: 2.32 ± 0.50 at 7 days and 4.37 ± 0.75 at 14 days; Vwf: 4.13 ± 0.82 and 7.74 ± 0.91; Col3a1: 5.43 ± 0.37 and 6.66 ± 0.89). Altogether, our data supported the conclusion that the localized delivery of PDGF-BB from PLGA-MSVs induced the localized de novo formation of fully functional vessels in vivo. With this study, we demonstrated that PLGA-MSV holds promise for accomplishing the controlled localized in vivo release of GFs for the design of innovative tissue engineering strategies.
Assuntos
Preparações de Ação Retardada/química , Animais , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Ácido Poliglicólico , Proteínas Proto-Oncogênicas c-sisRESUMO
Deregulated dynamics of the extracellular matrix (ECM) are one of the hallmarks of cancer. Studies on tumor mechanobiology are thus expected to provide an insight into the disease pathogenesis as well as potentially useful biomarkers. Type I collagen is among the major determinants of breast ECM structural and tensile properties, and collagen modifications during tumor evolution drive a number of disease-related processes favoring cancer progression and invasion. We investigated the use of 3D collagen-based scaffolds to identify the modifications induced by cancer cells on the mechanical and structural properties of the matrix, comparing cell lines from two breast tumor subtypes with different clinical aggressiveness. Orthotopic implantation was used to investigate the collagen content and architecture of in vivo breast tumors generated by the two cell lines. MDA-MB-231, which belongs to the aggressive basal-like subtype, increased scaffold stiffness and overexpressed the matrix-modifying enzyme, lysyl oxidase (LOX), whereas luminal A MCF-7 cells did not significantly alter the mechanical characteristics of extracellular collagen. This replicates the behavior of in vivo tumors generated by MDA-MB-231, characterized by a higher collagen content and higher LOX levels than MCF-7. When LOX activity was blocked, the ability of MDA-MB-231 to alter scaffold stiffness was impaired. Our model could constitute a relevant in vitro tool to reproduce and investigate the biomechanical interplay subsisting between cancer cells and the surrounding ECM and its impact on tumor phenotype and behavior.
RESUMO
Persistent amenorrhea is a frequent condition affecting anorexic patients after stable weight recovery. It has been proposed that it could be due to alterations of the hypothalamic-pituitary-gonadal axis linked with persistent hormonal impairments, such as relative hypercortisolemia and hypoleptinemia, and psychological symptoms related to anorexia nervosa (AN). The aim of our study was to evaluate the metabolic and hormonal pattern involved in the persistence of amenorrhea after recovery from AN. Eight weight-recovered anorexic patients with amenorrhea were investigated and matched with 10 healthy eumenorrhoic women, comparable for age and BMI. Data showed basal FSH and LH values similar in both groups and a normal pituitaric response to LHRH administration. Morning serum cortisol was normal but significantly higher in patients, while dehydroepiandrosterone sulfate (DHEAS) to cortisol ratio, leptin and vitamin D were significantly lower in patients than controls. Women with previous AN presented insulin resistance and two patients showed an overall picture consistent with polycystic ovary syndrome (PCOS). In conclusion, long-lasting amenorrhea after recovery from AN is linked with a persistent hypothalamic dysfunction, although other concomitant causes like PCOS and insulin resistance should be considered. Decreased DHEAS to cortisol ratio is a new finding which could be correlated to the persistent hypogonadism.
Assuntos
Amenorreia/sangue , Anorexia Nervosa/complicações , Sulfato de Desidroepiandrosterona/sangue , Hidrocortisona/sangue , Resistência à Insulina/fisiologia , Adolescente , Adulto , Amenorreia/etiologia , Peso Corporal , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Hormônio Luteinizante/sangue , Síndrome do Ovário Policístico/sangue , Adulto JovemRESUMO
Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. STATEMENT OF SIGNIFICANCE: Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (CollE Sheets and Scaffolds) not only showed promising mechanical performance, but also allowed for an efficient neovascularization, resulting in new adipose and muscle tissue formation within the implant, in only 6weeks. In addition, our meshes allowed for the use of the same surgical procedure utilized in clinical practice, with the commercially available grafts. This study represents a significant step in the design of bioactive acellular off-the-shelf biomimetic meshes for ventral hernia repair.
Assuntos
Materiais Biomiméticos , Colágeno , Elastina , Hérnia Ventral/cirurgia , Telas Cirúrgicas , Adulto , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Colágeno/química , Colágeno/farmacologia , Modelos Animais de Doenças , Elastina/química , Elastina/farmacologia , Feminino , Humanos , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Endogâmicos LewRESUMO
UNLABELLED: Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-ß). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. SIGNIFICANCE: Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer).
Assuntos
Anti-Inflamatórios/farmacologia , Materiais Biomiméticos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais , Animais , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Condrócitos/imunologia , Condrócitos/metabolismo , Condrócitos/transplante , Citocinas/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Ratos Endogâmicos Lew , Nicho de Células-Tronco , Fatores de TempoRESUMO
The interaction of immune cells with biomaterials has been identified as a possible predictor of either the success or the failure of the implant. Among immune cells, macrophages have been found to contribute to both of these possible scenarios, based on their polarization profile. This proof-of-concept study aimed to investigate if it was possible to affect the response of macrophages to biomaterials, by the release of anti-inflammatory mediators. Towards this end, a collagen scaffold, integrated with poly(lactic-co-glycolic acid)-multistage silicon particles (MSV) composite microspheres (PLGA-MSV) releasing IL-4 was developed (PLGA-MSV/IL-4). Macrophages' response to the scaffold was evaluated, both in vitro with rat bone-marrow derived macrophages, and in vivo in a rat subcutaneous pouch model. In vitro experiments revealed an overexpression of anti-inflammatory associated genes (Il-10, Mrc1, Arg1) at as soon as 48 h. The analysis of the cells that infiltrated the scaffold, revealed a prevalence of CD206(+) macrophages at 24 h. Our strategy demonstrated that it is possible to tune the in vivo early response to biomaterials by the release of an anti-inflammatory cytokine, and that could contribute to accelerate the resolution of the inflammatory phase, benefiting a vast range of tissue engineering applications.
Assuntos
Materiais Biomiméticos , Interleucina-4 , Macrófagos/metabolismo , Alicerces Teciduais/química , Animais , Arginase/biossíntese , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Interleucina-10/biossíntese , Interleucina-4/química , Interleucina-4/farmacocinética , Interleucina-4/farmacologia , Ratos , Ratos Endogâmicos Lew , Receptores Imunológicos/biossínteseRESUMO
Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release.
Assuntos
Materiais Biomiméticos/química , Ácido Láctico/química , Macrófagos/metabolismo , Microesferas , Ácido Poliglicólico/química , Alicerces Teciduais/química , Adsorção , Animais , Endocitose , Genes Reporter , Mediadores da Inflamação/metabolismo , Cinética , Macrófagos/ultraestrutura , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transdução de SinaisRESUMO
In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 µm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the biocompatibility of the platform in vivo.
Assuntos
Cápsulas/síntese química , Preparações de Ação Retardada/química , Ácido Láctico/química , Ácido Poliglicólico/química , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/farmacocinética , Dióxido de Silício/química , Absorção Fisico-Química , Animais , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Difusão , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Taxa de Depuração Metabólica , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Distribuição TecidualRESUMO
Augmentation of regenerative osteogenesis represents a premier clinical need, as hundreds of thousands of patients are left with insufficient healing of bony defects related to a host of insults ranging from congenital abnormalities to traumatic injury to surgically-induced deficits. A synthetic material that closely mimics the composition and structure of the human osteogenic niche represents great potential to successfully address this high demand. In this study, a magnesium-doped hydroxyapatite/type I collagen scaffold was fabricated through a biologically-inspired mineralization process and designed to mimic human trabecular bone. The composition of the scaffold was fully characterized by XRD, FTIR, ICP and TGA, and compared to human bone. Also, the scaffold microstructure was evaluated by SEM, while its nano-structure and nano-mechanical properties were evaluated by AFM. Human bone marrow-derived mesenchymal stem cells were used to test the in vitro capability of the scaffold to promote osteogenic differentiation. The cell/scaffold constructs were cultured up to 7 days and the adhesion, organization and proliferation of the cells were evaluated. The ability of the scaffold to induce osteogenic differentiation of the cells was assessed over 3 weeks and the correlate gene expression for classic genes of osteogenesis was assessed. Finally, when tested in an ectopic model in rabbit, the scaffold produced a large volume of trabecular bone in only two weeks, that subsequently underwent maturation over time as expected, with increased mature cortical bone formation, supporting its ability to promote bone regeneration in clinically-relevant scenarios. Altogether, these results confirm a high level of structural mimicry by the scaffold to the composition and structure of human osteogenic niche that translated to faster and more efficient osteoinduction in vivo--features that suggest such a biomaterial may have great utility in future clinical applications where bone regeneration is required.
Assuntos
Biomimética/instrumentação , Regeneração Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Alicerces Teciduais , Animais , Substitutos Ósseos/síntese química , Diferenciação Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Coelhos , Nicho de Células-Tronco/fisiologiaRESUMO
Bone is a dynamic organ where skeletal progenitors and hematopoietic cells share and compete for space. Presumptive mesenchymal stem cells (MSC) have been identified and harvested from the bone marrow (BM-MSC) and cortical bone fragments (CBF-MSC). In this study, we demonstrate that despite the cells sharing a common ancestor, the differences in the structural properties of the resident tissues affect cell behavior and prime them to react differently to stimuli. Similarly to the bone marrow, the cortical portion of the bone contains a unique subset of cells that stains positively for the common MSC-associated markers. These cells display different multipotent differentiation capability, clonogenic expansion, and immunosuppressive potential. In particular, when compared with BM-MSC, CBF-MSC are bigger in size, show a lower proliferation rate at early passages, have a greater commitment toward the osteogenic lineage, constitutively produce nitric oxide as a mediator for bone remodeling, and more readily respond to proinflammatory cytokines. Our data suggest that the effect of the tissue's microenvironment makes the CBF-MSC a superior candidate in the development of new strategies for bone repair.
Assuntos
Células da Medula Óssea/citologia , Osso e Ossos/citologia , Linhagem da Célula , Meio Ambiente , Osteoblastos/citologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Osteoblastos/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Acute pain remains a tremendous clinical and economic burden, as its prevalence and common narcotic-based treatments are associated with poorer outcomes and higher costs. Multimodal analgesia portends great therapeutic promise, but rarely allows opioid sparing, and new alternatives are necessary. Microparticles (MPs) composed of biodegradable polymers [e.g., poly(lactic-co-glycolic acid) or PLGA] have been applied for controlled drug release and acute pain treatment research. However, foreign particles' presence within inflamed tissue may affect the drug release or targeting, and/or cause a secondary inflammatory reaction. We examined how small alterations in the particulate nature of MPs affect both their uptake into and subsequent activation of macrophages. MPs composed of PLGA and chitosan (PLGA-Chi) loaded with bupivacaine (BP) were engineered at different sizes and their opsonization by J774 macrophages was assessed. Uptake of PLGA-Chi by macrophages was found to be size dependent, but they were not cytotoxic or proinflammatory in effect. Moreover, encapsulation of MPs in a thermoresponsive loading gel (pluronic F-127) effectively prevented opsonization. Finally, MPs displayed sustained, tunable release of BP up to 7 days. These results demonstrate our ability to develop a drug delivery system capable of controlled release of local anesthetics to treat acute/subacute pain while concurrently avoiding enhanced inflammation.