Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Med ; 30(7): 1882-1887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942994

RESUMO

There are more than 10,000 individual rare diseases and most are without therapy. Personalized genetic therapy represents one promising approach for their treatment. We present a road map for individualized treatment of an ultra-rare disease by establishing a gene replacement therapy developed for a single patient with hereditary spastic paraplegia type 50 (SPG50). Through a multicenter collaboration, an adeno-associated virus-based gene therapy product carrying the AP4M1 gene was created and successfully administered intrathecally to a 4-year-old patient within 3 years of diagnosis as part of a single-patient phase 1 trial. Primary endpoints were safety and tolerability, and secondary endpoints evaluated efficacy. At 12 months after dosing, the therapy was well tolerated. No serious adverse events were observed, with minor events, including transient neutropenia and Clostridioides difficile gastroenteritis, experienced but resolved. Preliminary efficacy measures suggest a stabilization of the disease course. Longer follow-up is needed to confirm the safety and provide additional insights on the efficacy of the therapy. Overall, this report supports the safety of gene therapy for SPG50 and provides insights into precision therapy development for rare diseases. Clinical trial registration: NCT06069687 .


Assuntos
Dependovirus , Terapia Genética , Paraplegia Espástica Hereditária , Humanos , Dependovirus/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/terapia , Terapia Genética/métodos , Pré-Escolar , Masculino , Vetores Genéticos/genética , Resultado do Tratamento
2.
Gene Ther ; 31(5-6): 234-241, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135787

RESUMO

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Assuntos
Cistatina B , Terapia Genética , Camundongos Knockout , Doenças Neuroinflamatórias , Animais , Camundongos , Terapia Genética/métodos , Cistatina B/genética , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/genética , Humanos , Ataxia/genética , Ataxia/terapia , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem
3.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
4.
J Biol Chem ; 296: 100150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277363

RESUMO

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Assuntos
Gliose/prevenção & controle , Glicogênio Sintase/fisiologia , Inflamação/prevenção & controle , Doença de Lafora/patologia , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Animais , Feminino , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Inflamação/patologia , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Doença de Lafora/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem
5.
Hum Gene Ther ; 31(5-6): 339-351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830809

RESUMO

Dravet syndrome (DS) is a neurodevelopmental genetic disorder caused by mutations in the SCN1A gene encoding the α subunit of the NaV1.1 voltage-gated sodium channel that controls neuronal action potential firing. The high density of this mutated channel in GABAergic interneurons results in impaired inhibitory neurotransmission and subsequent excessive activation of excitatory neurons. The syndrome is associated with severe childhood epilepsy, autistic behaviors, and sudden unexpected death in epilepsy. Here, we compared the rescue effects of an adeno-associated viral (AAV) vector coding for the multifunctional ß1 sodium channel auxiliary subunit (AAV-NaVß1) with a control vector lacking a transgene. We hypothesized that overexpression of NaVß1 would facilitate the function of residual voltage-gated channels and improve the DS phenotype in the Scn1a+/- mouse model of DS. AAV-NaVß1 was injected into the cerebral spinal fluid of neonatal Scn1a+/- mice. In untreated control Scn1a+/- mice, females showed a higher degree of mortality than males. Compared with Scn1a+/- control mice, AAV-NaVß1-treated Scn1a+/- mice displayed increased survival, an outcome that was more pronounced in females than males. In contrast, behavioral analysis revealed that male, but not female, Scn1a+/- mice displayed motor hyperactivity, and abnormal performance on tests of fear and anxiety and learning and memory. Male Scn1a+/- mice treated with AAV-NaVß1 showed reduced spontaneous seizures and normalization of motor activity and performance on the elevated plus maze test. These findings demonstrate sex differences in mortality in untreated Scn1a+/- mice, an effect that may be related to a lower level of intrinsic inhibitory tone in female mice, and a normalization of aberrant behaviors in males after central nervous system administration of AAV-NaVß1. The therapeutic efficacy of AAV-NaVß1 in a mouse model of DS suggests a potential new long-lasting biological therapeutic avenue for the treatment of this catastrophic epilepsy.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Terapia Genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Animais , Transtorno Autístico/genética , Transtorno Autístico/terapia , Dependovirus/genética , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/terapia , Feminino , Vetores Genéticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Convulsões/genética , Convulsões/terapia , Fatores Sexuais , Transgenes , Resultado do Tratamento
6.
Ann Clin Transl Neurol ; 6(1): 106-113, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30656188

RESUMO

Objective: To investigate the genetic basis of the recessive form of primary familial brain calcification and study pathways linking a novel gene with known dominant genes that cause the disease. Methods: Whole exome sequencing and Sanger-based segregation analysis were used to identify possible disease causing mutations. Mutation pathogenicity was validated by structural protein modeling. Functional associations between the candidate gene, MYORG, and genes previously implicated in the disease were examined through phylogenetic profiling. Results: We studied nine affected individuals from two unrelated families of Middle Eastern origin. The median age of symptom onset was 29.5 years (range 21-57 years) and dysarthria was the most common presenting symptom. We identified in the MYORG gene, a homozygous c.1233delC mutation in one family and c.1060_1062delGAC mutation in another. The first mutation results in protein truncation and the second in deletion of a highly conserved aspartic acid that is likely to disrupt binding of the protein with its substrate. Phylogenetic profiling analysis of the MYORG protein sequence suggests co-evolution with a number of calcium channels as well as other proteins related to regulation of anion transmembrane transport (False Discovery Rate, FDR < 10-8) and with PDCD6IP, a protein interacting with PDGFR ß which is known to be involved in the disease. Interpretation: MYORG mutations are linked to a recessive form of primary familial brain calcification. This association was recently described in patients of Chinese ancestry. We suggest the possibility that MYORG mutations lead to calcification in a PDGFR ß-related pathway.


Assuntos
Encefalopatias Metabólicas/genética , Calcinose/genética , Glicosídeo Hidrolases/genética , Adulto , Povo Asiático/genética , Encefalopatias Metabólicas/complicações , Encefalopatias Metabólicas/patologia , Calcinose/complicações , Feminino , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
7.
Neurol Genet ; 3(6): e199, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29264391

RESUMO

OBJECTIVE: To expand the clinical phenotype associated with STXBP1 gene mutations and to understand the effect of STXBP1 mutations in the pathogenesis of focal cortical dysplasia (FCD). METHODS: Patients with STXBP1 mutations were identified in various ways: as part of a retrospective cohort study of epileptic encephalopathy; through clinical referrals of individuals (10,619) with developmental delay (DD) for chromosomal microarray; and from a collection of 5,205 individuals with autism spectrum disorder (ASD) examined by whole-genome sequencing. RESULTS: Seven patients with heterozygous de novo mutations affecting the coding region of STXBP1 were newly identified. Three cases had radiologic evidence suggestive of FCD. One male patient with early infantile epileptic encephalopathy, DD, and ASD achieved complete seizure remission following resection of dysplastic brain tissue. Examination of excised brain tissue identified mosaicism for STXBP1, providing evidence for a somatic mechanism. Cell-type expression analysis suggested neuron-specific expression. A comprehensive analysis of the published data revealed that 3.1% of severe epilepsy cases carry a pathogenic de novo mutation within STXBP1. By contrast, ASD was rarely associated with mutations in this gene in our large cohorts. CONCLUSIONS: STXBP1 mutations are an important cause of epilepsy and are also rarely associated with ASD. In a case with histologically proven FCD, an STXBP1 somatic mutation was identified, suggesting a role in its etiology. Removing such tissue may be curative for STXBP1-related epilepsy.

8.
Am J Hum Genet ; 99(6): 1359-1367, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866705

RESUMO

Epileptic encephalopathies are a catastrophic group of epilepsies characterized by refractory seizures and cognitive arrest, often resulting from abnormal brain development. Here, we have identified an epileptic encephalopathy additionally featuring cerebral calcifications and coarse facial features caused by recessive loss-of-function mutations in DENND5A. DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rabs, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development. Mechanistically, these changes appear to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Thus, we have identified a link between a DENN domain protein and neuronal development, dysfunction of which is responsible for a form of epileptic encephalopathy.


Assuntos
Encéfalo/patologia , Epilepsia/genética , Mutação , Proteínas rab de Ligação ao GTP/genética , Adolescente , Animais , Criança , Consanguinidade , Feminino , Fatores de Troca do Nucleotídeo Guanina , Humanos , Masculino , Neurônios/metabolismo , Células PC12 , Linhagem , Ratos
9.
Brain ; 138(Pt 10): 2859-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297560

RESUMO

Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ≥16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.


Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Cardiopatias/etiologia , Hemiplegia/complicações , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Eletrocardiografia , Feminino , Cardiopatias/diagnóstico , Frequência Cardíaca/genética , Ventrículos do Coração/fisiopatologia , Hemiplegia/genética , Humanos , Lactente , Recém-Nascido , Cooperação Internacional , Masculino , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto Jovem
10.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26199317

RESUMO

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doença de Depósito de Glicogênio/enzimologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/enzimologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Biologia Computacional , Sistema da Enzima Desramificadora do Glicogênio/efeitos dos fármacos , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Dados de Sequência Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
11.
J Child Neurol ; 30(13): 1749-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25895915

RESUMO

We describe the molecular basis of a distinctive syndrome characterized by infantile stress-induced episodic weakness, ataxia, and sensorineural hearing loss, with permanent areflexia and optic nerve pallor. Whole exome sequencing identified a deleterious heterozygous c.2452 G>A, p.(E818K) variant in the ATP1A3 gene and structural analysis predicted its protein-destabilizing effect. This variant has not been reported in context with rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood, the 2 main diseases associated with ATP1A3. The clinical presentation in the family described here differs categorically from these diseases in age of onset, clinical course, cerebellar over extrapyramidal movement disorder predominance, and peripheral nervous system involvement. While this paper was in review, a highly resembling phenotype was reported in additional patients carrying the same c.2452 G>A variant. Our findings substantiate this variant as the cause of a unique inherited autosomal dominant neurologic syndrome that constitutes a third allelic disease of the ATP1A3 gene.


Assuntos
Ataxia Cerebelar/genética , Deformidades Congênitas do Pé/genética , Perda Auditiva Neurossensorial/genética , Atrofia Óptica/genética , Reflexo Anormal/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Pré-Escolar , Família , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos
12.
Acta Neuropathol ; 129(3): 383-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25644398

RESUMO

Autophagic vacuolar myopathies (AVMs) are a group of disorders united by shared histopathological features on muscle biopsy that include the aberrant accumulation of autophagic vacuoles. The classic conditions that compose the AVMs include Pompe Disease, Danon Disease and X-linked myopathy with excessive autophagy (XMEA). Other disorders, including acquired myopathies like chloroquine toxicity, also have features of an autophagic myopathy. This review is focused on XMEA, a myopathy with onset of slowly progressive proximal weakness and elevated serum creatine kinase (2× to 20× normal) typically in the first decade of life. However, both late-adult onset and severe, sometimes lethal, neonatal cases also occur. Skeletal muscle pathology is characterized by numerous cytoplasmic autophagic vacuoles, complex muscle fiber splitting with internalization of capillaries, and complement C5b-9 deposition within vacuoles and along the sarcolemma. The autophagic vacuoles have sarcolemmal features. Mutations in the VMA21 gene at Xq28 cause XMEA by reducing the activity of lysosomal hydrolases. The VMA21 protein regulates the assembly of the V-ATPase required to acidify the lysosome. Increased lysosomal pH and poor degradation of cellular debris may secondarily induce autophagy, the net effect being accumulation of autophagolysosomes. The relationship of XMEA to other lysosomal disorders of muscle and potential therapeutic interventions for XMEA are discussed.


Assuntos
Autofagia/fisiologia , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Doenças Musculares/fisiopatologia , ATPases Vacuolares Próton-Translocadoras/genética , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças Musculares/genética
13.
Neurol Genet ; 1(4): e28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27066565

RESUMO

The DEPDC5 gene (OMIM #614191), mapped to 22q12.2-q12.3, encodes the DEP domain-containing protein 5. DEPDC5 has been associated with a variety of familial epilepsies, including familial focal epilepsy with variable foci, autosomal dominant nocturnal frontal lobe epilepsy, familial temporal lobe epilepsy, epileptic spasms, and cortical dysplasia.(1-4) Notably, DEPDC5 has never been linked to increased risk of sudden unexpected death in epilepsy (SUDEP). We report a family with epilepsy due to DEPDC5 mutation and 2 definite cases of SUDEP within this family.

14.
Pediatr Neurol ; 51(6): 850-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25439493

RESUMO

BACKGROUND: Alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism are two separate movement disorders with different dominant mutations in the same sodium-potassium transporter ATPase subunit gene, ATP1A3. PATIENT: We present a child with topiramate-responsive alternating hemiplegia of childhood who was tested for an ATP1A3 gene mutation. RESULTS: Gene sequencing revealed an identical ATP1A3 mutation as in three typical adult-onset rapid-onset dystonia parkinsonism cases but never previously described in an alternating hemiplegia of childhood case. CONCLUSION: The discordance of these phenotypes suggests that there are other undiscovered environmental, genetic, or epigenetic factors influencing the development of alternating hemiplegia of childhood or rapid-onset dystonia parkinsonism.


Assuntos
Distúrbios Distônicos/genética , Fosfolipases A2 do Grupo VI/deficiência , Hemiplegia/genética , Transtornos Parkinsonianos/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Pré-Escolar , Distúrbios Distônicos/etiologia , Feminino , Fosfolipases A2 do Grupo VI/genética , Hemiplegia/etiologia , Humanos , Masculino , Mutação , Transtornos Parkinsonianos/etiologia
15.
PLoS One ; 9(4): e91742, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699272

RESUMO

Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2(tm1.1Bird)) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼ 800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼ 230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/fisiologia , Neuroblastoma/genética , Neurônios/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Knockout , Neuroblastoma/patologia , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Pediatr Neurol ; 50(5): 522-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24485929

RESUMO

BACKGROUND: Infantile spasms is an epileptic encephalopathy and the common final manifestation of numerous disparate insults to the developing brain during infancy. The varied etiologies may be structural, metabolic, genetic, or unknown. Etiological diagnosis is important as it may lead to specific therapy, which may affect developmental outcome. PATIENT: We report a case of infantile spasms of unknown etiology with dysmorphic features, in which genetic copy number variation microarray testing was included in the investigation of the cause of the disease. RESULTS: A large deletion of chromosome 13 was identified in the region 13q13 to 13q21.3 encompassing the retinoblastoma gene (13q14.2). Urgent ophthalmological evaluation revealed an asymptomatic retinoblastoma of the left eye, leading to early treatment. CONCLUSION: This is the first case report of infantile spasms specifically associated with a chromosome 13q deletion. Chromosomal region 13q13 to 13q21.3 may contain one or more genes whose hemizygous loss leads to infantile spasms. Copy number variation testing for cryptogenic infantile spasms led to the discovery of a mutation responsible for retinoblastoma, enabling early diagnosis and treatment of a potentially life-threatening cancer. High-sensitivity molecular diagnosis improves health care and substantially reduces expenses. This shift in diagnostic evaluation is broadly relevant to health care.


Assuntos
Transtornos Cromossômicos/complicações , Transtornos Cromossômicos/genética , Retinoblastoma/complicações , Retinoblastoma/genética , Espasmos Infantis/complicações , Espasmos Infantis/genética , Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Variações do Número de Cópias de DNA , Diagnóstico Precoce , Genes do Retinoblastoma , Testes Genéticos , Humanos , Lactente , Masculino , Retinoblastoma/terapia
17.
Muscle Nerve ; 50(1): 138-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24488655

RESUMO

INTRODUCTION: X-linked myopathy with excessive autophagy (XMEA) is characterized by autophagic vacuoles with sarcolemmal features. Mutations in VMA21 result in insufficient lysosome acidification, causing progressive proximal weakness with onset before age 20 years and loss of ambulation by middle age. METHODS: We describe a patient with onset of slowly progressive proximal weakness of the lower limbs after age 50, who maintains ambulation with the assistance of a cane at age 71. RESULTS: Muscle biopsy at age 66 showed complex muscle fiber splitting, internalized capillaries, and vacuolar changes characteristic of autophagic vacuolar myopathy. Vacuoles stained positive for sarcolemmal proteins, LAMP2, and complement C5b-9. Ultrastructural evaluation further revealed basal lamina reduplication and extensive autophagosome extrusion. Sanger sequencing identified a known pathologic splice site mutation in VMA21 (c.164-7T>G). CONCLUSIONS: This case expands the clinical phenotype of XMEA and suggests VMA21 sequencing be considered in evaluating men with LAMP2-positive autophagic vacuolar myopathy.


Assuntos
Autofagia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Musculares/patologia , Idoso , Autofagia/fisiologia , Biópsia , Análise Mutacional de DNA , Progressão da Doença , Eletromiografia , Éxons/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Íntrons/genética , Masculino , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Doenças Musculares/genética , Mutação/genética , Mutação/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética
18.
Mol Neurobiol ; 48(1): 49-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23546741

RESUMO

Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.


Assuntos
Progressão da Doença , Fosfatases de Especificidade Dupla/metabolismo , Estresse do Retículo Endoplasmático , Glucanos/metabolismo , Corpos de Inclusão/metabolismo , Doença de Lafora/patologia , Neurônios/patologia , Regulação Alostérica , Animais , Apoptose , Ativação Enzimática , Técnicas de Silenciamento de Genes , Glicogênio/biossíntese , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Hidrólise , Doença de Lafora/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Neurônios/enzimologia , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras , alfa-Amilases/metabolismo
19.
Handb Clin Neurol ; 113: 1731-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23622396

RESUMO

The progressive myoclonus epilepsies (PMEs) consist of a group of diseases with myoclonic seizures and progressive neurodegeneration, with onset in childhood and/or adolescence. Lafora disease is a neuronal glycogenosis in which normal glycogen is transformed into starch-like polyglucosans that accumulate in the neuronal somatodendritic compartment. It is caused by defects of two genes of yet unknown function, one encoding a glycogen phosphatase (laforin) and the other an ubiquitin E3 ligase (malin). Early cognitive deterioration, visual seizures affecting over half, and slowing down of EEG basic activity are three major diagnostic clues. Unverricht-Lundborg disease is presently thought to be due to damage to neurons by lysosomal cathepsins and reactive oxygen species due to absence of cystatin B, a small protein that inactivates cathepsins and, by ways yet unknown, quenches damaging redox compounds. Preserved cognition and background EEG activity, action myoclonus early morning and vertex spikes in REM sleep are the diagnostic clues. Sialidosis, with cherry-red spot, neuronopathic Gaucher disease, with paralysis of verticality, and ataxia-PME, with ataxia at onset in the middle of the first decade, are also lysosomal diseases. How the lysosomal defect culminates in myoclonus and epilepsy in these conditions remains unknown.


Assuntos
Epilepsias Mioclônicas Progressivas/diagnóstico , Neurônios/patologia , Criança , Humanos , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/patologia
20.
Acta Neuropathol ; 125(3): 439-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315026

RESUMO

X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy.


Assuntos
Adenosina Trifosfatases/metabolismo , Autofagia/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/prevenção & controle , Doenças Musculares/genética , Doenças Musculares/prevenção & controle , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/patologia , Mutação/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Fatores de Tempo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA