Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(1): 9, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092981

RESUMO

We demonstrated the infectivity and host adaptation of a viola isolate of Plantago asiatica mosaic virus (PlAMV-Vi) in an asymptomatic host, Nicotiana benthamiana, through long-term serial passages. Serial passaging of a green fluorescent protein-tagged full-length cDNA clone of PlAMV-Vi (PlAMV-ViGFP) in N. benthamiana plants resulted in the appearance of a new virus line inducing leaf-crinkle symptoms, the Leaf Crinkle (LC) line. Virus titers were higher for both in the LC and the 14th passage line(s) of PlAMV-ViGFP compared with the original line. The LC line was found to have seven unique nucleotide mutations that may have contributed to its higher virulence and multiplication rate in N. benthamiana.


Assuntos
Nicotiana , Potexvirus , Virulência , Potexvirus/genética , Doenças das Plantas
2.
Virus Res ; 331: 199128, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37149224

RESUMO

Positive-strand RNA viruses replicate their RNA in the viral replication complex, a spherical structure formed by remodeling of host intracellular membranes. This process also requires the interaction between viral membrane-associated replication proteins and host factors. We previously identified the membrane-associated determinant of the replicase of plantago asiatica mosaic virus (PlAMV), a positive-strand RNA virus of the genus Potexvirus, in its methyltransferase (MET) domain, and suggested that its interaction with host factors is required to establish viral replication. Here we identified Nicotiana benthamiana dynamin-related protein 2 (NbDRP2) as an interactor of the MET domain of the PlAMV replicase by co-immunoprecipitation (Co-IP) and mass spectrometry analysis. NbDRP2 is closely related to the DRP2 subfamily proteins in Arabidopsis thaliana, AtDRP2A and AtDRP2B. Confocal microscopy observation and Co-IP confirmed the interaction between the MET domain and NbDRP2. Also, the expression of NbDRP2 was induced by PlAMV infection. PlAMV accumulation was reduced when the expression of NbDRP2 gene was suppressed by virus-induced gene silencing. In addition, PlAMV accumulation was reduced in protoplasts treated with dynamin inhibitor. These results indicate a proviral role of the interaction of NbDRP2 with the MET domain in PlAMV replication.


Assuntos
Arabidopsis , Potexvirus , Potexvirus/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Arabidopsis/genética , Nucleotidiltransferases/metabolismo , Dinaminas/metabolismo , Replicação Viral , Nicotiana
3.
Sci Rep ; 4: 7399, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492247

RESUMO

Despite plants infected by pathogens are often unable to produce offspring, it remains unclear how sterility is induced in host plants. In this study, we demonstrate that TENGU, a phytoplasmal virulence peptide known as a dwarfism inducer, acts as an inducer of sterility. Transgenic expression of TENGU induced both male and female sterility in Arabidopsis thaliana flowers similar to those observed in double knockout mutants of auxin response factor 6 (ARF6) and ARF8, which are known to regulate floral development in a jasmonic acid (JA)-dependent manner. Transcripts of ARF6 and ARF8 were significantly decreased in both tengu-transgenic and phytoplasma-infected plants. Furthermore, JA and auxin levels were actually decreased in tengu-transgenic buds, suggesting that TENGU reduces the endogenous levels of phytohormones by repressing ARF6 and ARF8, resulting in impaired flower maturation. TENGU is the first virulence factor with the effects on plant reproduction by perturbation of phytohormone signaling.


Assuntos
Arabidopsis , Proteínas de Bactérias , Ciclopentanos/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Peptídeos , Phytoplasma , Infertilidade das Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/metabolismo , Flores/microbiologia , Peptídeos/genética , Peptídeos/metabolismo , Phytoplasma/genética , Phytoplasma/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Arch Virol ; 159(5): 885-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24154949

RESUMO

Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.


Assuntos
Arabidopsis/virologia , Regulação Viral da Expressão Gênica/fisiologia , Nicotiana/virologia , Potexvirus/metabolismo , Proteínas Virais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/virologia , Potexvirus/genética , Interferência de RNA
5.
Plant Cell ; 24(2): 778-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22307853

RESUMO

Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein-mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.


Assuntos
Arabidopsis/imunologia , Lectinas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Potexvirus/patogenicidade , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia
6.
J Virol ; 85(19): 10269-78, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752911

RESUMO

Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.


Assuntos
Carlavirus/imunologia , Carlavirus/patogenicidade , Inativação Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Nicotiana/virologia
7.
Mol Plant Microbe Interact ; 24(4): 408-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21190438

RESUMO

Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.


Assuntos
Regulação Viral da Expressão Gênica , Nicotiana/virologia , Potexvirus/genética , Potexvirus/fisiologia , RNA Polimerase Dependente de RNA/genética , Replicação Viral/fisiologia , Mutação da Fase de Leitura , Regulação Enzimológica da Expressão Gênica , Necrose , Doenças das Plantas/virologia , Mutação Puntual , Potexvirus/enzimologia , Potexvirus/patogenicidade , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA