Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(47): 12448-12453, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109273

RESUMO

The TGF-ß family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Hipertrofia/induzido quimicamente , Músculo Esquelético/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Ativinas/metabolismo , Animais , Anticorpos Bloqueadores/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Proteínas Morfogenéticas Ósseas/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Hipertrofia/patologia , Masculino , Camundongos , Camundongos SCID , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miostatina/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/patologia
2.
Skelet Muscle ; 6: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462398

RESUMO

BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. METHODS: In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. RESULTS: Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. CONCLUSIONS: Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Receptores de Activinas Tipo II/metabolismo , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Caquexia/prevenção & controle , Neoplasias do Colo/complicações , Receptores de Activinas Tipo II/imunologia , Animais , Anticorpos Monoclonais Humanizados , Peso Corporal/efeitos dos fármacos , Caquexia/etiologia , Cisplatino/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Everolimo/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos
3.
Sci Signal ; 4(201): ra80, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126963

RESUMO

Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of Gα(i2). Expression of a constitutively active mutant of Gα(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active Gα(i2) mutant inhibited atrophy caused by the cachectic cytokine TNFα (tumor necrosis factor-α) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). Gα(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that Gα(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through Gα(i2) might represent potential targets for preventing skeletal muscle wasting.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Mioblastos Esqueléticos/enzimologia , Regeneração , Transdução de Sinais , Animais , Ativação Enzimática/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Hipertrofia/enzimologia , Hipertrofia/genética , Hipertrofia/patologia , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutação , Mioblastos Esqueléticos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell Cycle ; 10(14): 2355-63, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685725

RESUMO

Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G 1- or G 2-specific differentiation checkpoint. In response to genotoxins that induce G 1 arrest, MyoD binds target genes but is functionally inactivated by a c-Abl-dependent phosphorylation. In contrast, DNA damage-activated G 2 checkpoint relies on the inability of MyoD to bind the chromatin at the G 2 phase of the cell cycle. These results indicate an intimate relationship between DNA damage-activated cell cycle checkpoints and the control of tissue-specific gene expression to allow DNA repair in myoblasts prior to the activation of the differentiation program.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Regulação da Expressão Gênica , Músculos/metabolismo , Mioblastos/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Cromatina/metabolismo , Dano ao DNA , Fase G1 , Fase G2 , Camundongos , Proteína MyoD/antagonistas & inibidores , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Oxidantes/toxicidade , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo
5.
Mol Med ; 17(5-6): 457-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21308150

RESUMO

Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Animais , Distrofina/metabolismo , Humanos , Camundongos , Distrofias Musculares/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
6.
Proc Natl Acad Sci U S A ; 105(49): 19183-7, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19047631

RESUMO

The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Histona Desacetilase 2 , Histona Desacetilases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Mioblastos/citologia , Mioblastos/enzimologia , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Piridinas/farmacologia , RNA Interferente Pequeno , Proteínas Repressoras/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA