Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 30(5): 1320-1329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480922

RESUMO

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Assuntos
Receptores ErbB , Glioblastoma , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Pessoa de Meia-Idade , Masculino , Receptores de Antígenos Quiméricos/imunologia , Feminino , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Injeções Espinhais , Dose Máxima Tolerável
2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496540

RESUMO

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

3.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326078

RESUMO

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Diagnóstico por Imagem , Organoides/patologia
4.
Mol Psychiatry ; 29(2): 449-463, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38123727

RESUMO

Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.


Assuntos
Encéfalo , Epigênese Genética , Animais , Humanos , Encéfalo/metabolismo , Encefalopatias/genética , Encefalopatias/metabolismo , Epigenômica/métodos , Neurogênese , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma , Pesquisa Translacional Biomédica/métodos , Vacinas contra COVID-19
5.
Trends Pharmacol Sci ; 45(1): 24-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103979

RESUMO

The epitranscriptomics field has undergone tremendous growth since the discovery that the RNA N6-methyladenosine (m6A) modification is reversible and is distributed throughout the transcriptome. Efforts to map RNA modifications transcriptome-wide and reshape the epitranscriptome in disease settings have facilitated mechanistic understanding and drug discovery in the field. In this review we discuss recent advancements in RNA modification detection methods and consider how these developments can be applied to gain novel insights into the epitranscriptome. We also highlight drug discovery efforts aimed at developing epitranscriptomic therapeutics for cancer and other diseases. Finally, we consider engineering of the epitranscriptome as an emerging direction to investigate RNA modifications and their causal effects on RNA processing at high specificity.


Assuntos
Neoplasias , RNA , Humanos , RNA/genética , Transcriptoma , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Brain Sci ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137103

RESUMO

Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.

7.
Front Neurosci ; 17: 1291446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928731

RESUMO

Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.

8.
STAR Protoc ; 4(3): 102470, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37585295

RESUMO

Human stem-cell-derived organoids represent a promising substrate for transplantation-based neural repair. Here, we describe a protocol for transplanting forebrain organoids into an injured adult rat visual cortex. This protocol includes surgical details for craniectomy, aspiration injury, organoid transplantation, and cranioplasty. This platform represents a valuable tool for investigating the efficacy of organoids as structured grafts for neural repair. For complete details on the use and execution of this protocol, please refer to Jgamadze et al.1.


Assuntos
Prosencéfalo , Córtex Visual , Adulto , Humanos , Animais , Ratos , Craniotomia , Organoides , Células-Tronco , Córtex Visual/cirurgia
9.
Cell Rep Med ; 4(6): 101059, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343520

RESUMO

Mann and Zhang et al. developed a robust ex vivo slice culture platform consisting of resected patient high- and low-grade glioma tissue engrafted onto rat organotypic brain slices, and interrogated tumor responses to clinically relevant therapeutics with a novel treatment-response algorithm.


Assuntos
Neoplasias Encefálicas , Glioma , Ratos , Animais , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patologia
10.
Cell Stem Cell ; 30(2): 137-152.e7, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736289

RESUMO

Brain organoids created from human pluripotent stem cells represent a promising approach for brain repair. They acquire many structural features of the brain and raise the possibility of patient-matched repair. Whether these entities can integrate with host brain networks in the context of the injured adult mammalian brain is not well established. Here, we provide structural and functional evidence that human brain organoids successfully integrate with the adult rat visual system after transplantation into large injury cavities in the visual cortex. Virus-based trans-synaptic tracing reveals a polysynaptic pathway between organoid neurons and the host retina and reciprocal connectivity between the graft and other regions of the visual system. Visual stimulation of host animals elicits responses in organoid neurons, including orientation selectivity. These results demonstrate the ability of human brain organoids to adopt sophisticated function after insertion into large injury cavities, suggesting a translational strategy to restore function after cortical damage.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Adulto , Prosencéfalo , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Retina , Organoides/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Mamíferos
11.
Oxf Open Neurosci ; 2: kvad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38596241

RESUMO

Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.

12.
Mol Ther Oncolytics ; 27: 288-304, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458202

RESUMO

Antigen heterogeneity that results in tumor antigenic escape is one of the major obstacles to successful chimeric antigen receptor (CAR) T cell therapies in solid tumors including glioblastoma multiforme (GBM). To address this issue and improve the efficacy of CAR T cell therapy for GBM, we developed an approach that combines CAR T cells with inhibitor of apoptosis protein (IAP) antagonists, a new class of small molecules that mediate the degradation of IAPs, to treat GBM. Here, we demonstrated that the IAP antagonist birinapant could sensitize GBM cell lines and patient-derived primary GBM organoids to apoptosis induced by CAR T cell-derived cytokines, such as tumor necrosis factor. Therefore, birinapant could enhance CAR T cell-mediated bystander death of antigen-negative GBM cells, thus preventing tumor antigenic escape in antigen-heterogeneous tumor models in vitro and in vivo. In addition, birinapant could promote the activation of NF-κB signaling pathways in antigen-stimulated CAR T cells, and with a birinapant-resistant tumor model we showed that birinapant had no deleterious effect on CAR T cell functions in vitro and in vivo. Overall, we demonstrated the potential of combining the IAP antagonist birinapant with CAR T cells as a novel and feasible approach to overcoming tumor antigen heterogeneity and enhancing CAR T cell therapy for GBM.

13.
Trends Pharmacol Sci ; 42(12): 976-978, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657723

RESUMO

Pseudouridine is the most abundant yet unexplored RNA modification in glioblastoma. Cui and coworkers find that PUS7, a pseudouridine depositing enzyme, promotes tumor growth and can be targeted by small molecule inhibitors. Mechanistically, PUS7 modifies tRNAs, reduces TYK2 translation, and downregulates a proliferation-restricting interferon-STAT1 pathway in glioblastoma.


Assuntos
Glioblastoma , Transferases Intramoleculares , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Pseudouridina/metabolismo , RNA de Transferência/metabolismo
14.
Front Oncol ; 11: 664236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568006

RESUMO

Tumor heterogeneity is a key reason for therapeutic failure and tumor recurrence in glioblastoma (GBM). Our chimeric antigen receptor (CAR) T cell (2173 CAR T cells) clinical trial (NCT02209376) against epidermal growth factor receptor (EGFR) variant III (EGFRvIII) demonstrated successful trafficking of T cells across the blood-brain barrier into GBM active tumor sites. However, CAR T cell infiltration was associated only with a selective loss of EGFRvIII+ tumor, demonstrating little to no effect on EGFRvIII- tumor cells. Post-CAR T-treated tumor specimens showed continued presence of EGFR amplification and oncogenic EGFR extracellular domain (ECD) missense mutations, despite loss of EGFRvIII. To address tumor escape, we generated an EGFR-specific CAR by fusing monoclonal antibody (mAb) 806 to a 4-1BB co-stimulatory domain. The resulting construct was compared to 2173 CAR T cells in GBM, using in vitro and in vivo models. 806 CAR T cells specifically lysed tumor cells and secreted cytokines in response to amplified EGFR, EGFRvIII, and EGFR-ECD mutations in U87MG cells, GBM neurosphere-derived cell lines, and patient-derived GBM organoids. 806 CAR T cells did not lyse fetal brain astrocytes or primary keratinocytes to a significant degree. They also exhibited superior antitumor activity in vivo when compared to 2173 CAR T cells. The broad specificity of 806 CAR T cells to EGFR alterations gives us the potential to target multiple clones within a tumor and reduce opportunities for tumor escape via antigen loss.

15.
Cell Stem Cell ; 28(9): 1657-1670.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961804

RESUMO

Human brain organoids represent remarkable platforms for recapitulating features of human brain development and diseases. Existing organoid models do not resolve fine brain subregions, such as different nuclei in the hypothalamus. We report the generation of arcuate organoids (ARCOs) from human induced pluripotent stem cells (iPSCs) to model the development of the human hypothalamic arcuate nucleus. Single-cell RNA sequencing of ARCOs revealed significant molecular heterogeneity underlying different arcuate cell types, and machine learning-aided analysis based on the neonatal human hypothalamus single-nucleus transcriptome further showed a human arcuate nucleus molecular signature. We also explored ARCOs generated from Prader-Willi syndrome (PWS) patient iPSCs. These organoids exhibit aberrant differentiation and transcriptomic dysregulation similar to postnatal hypothalamus of PWS patients, indicative of cellular differentiation deficits and exacerbated inflammatory responses. Thus, patient iPSC-derived ARCOs represent a promising experimental model for investigating nucleus-specific features and disease-relevant mechanisms during early human arcuate development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Prader-Willi , Diferenciação Celular , Humanos , Hipotálamo , Organoides
16.
Semin Cell Dev Biol ; 111: 4-14, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561297

RESUMO

Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Organoides/metabolismo , Encéfalo/patologia , Diferenciação Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neurônios/citologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cultura Primária de Células , Viroses/genética , Viroses/metabolismo , Viroses/patologia , Viroses/virologia
17.
Nat Protoc ; 15(12): 4000-4033, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169003

RESUMO

Glioblastoma tumors exhibit extensive inter- and intratumoral heterogeneity, which has contributed to the poor outcomes of numerous clinical trials and continues to complicate the development of effective therapeutic strategies. Most in vitro models do not preserve the cellular and mutational diversity of parent tumors and often require a lengthy generation time with variable efficiency. Here, we describe detailed procedures for generating glioblastoma organoids (GBOs) from surgically resected patient tumor tissue using a chemically defined medium without cell dissociation. By preserving cell-cell interactions and minimizing clonal selection, GBOs maintain the cellular heterogeneity of parent tumors. We include details of how to passage and cryopreserve GBOs for continued use, biobanking and long-term recovery. In addition, we describe procedures for investigating patient-specific responses to immunotherapies by co-culturing GBOs with chimeric antigen receptor (CAR) T cells. It takes ~2-4 weeks to generate GBOs and 5-7 d to perform CAR T cell co-culture using this protocol. Competence with human cell culture, tissue processing, immunohistology and microscopy is required for optimal results.


Assuntos
Bancos de Espécimes Biológicos , Glioblastoma/patologia , Organoides/patologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Técnicas de Cocultura , Criopreservação , Humanos , Organoides/imunologia
18.
Neurobiol Dis ; 146: 105139, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33065280

RESUMO

The blossoming field of epitranscriptomics has recently garnered attention across many fields by findings that chemical modifications on RNA have immense biological consequences. Methylation of nucleotides in RNA, including N6-methyladenosine (m6A), 2-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and isomerization of uracil to pseudouridine (Ψ), have the potential to alter RNA processing events and contribute to developmental processes and different diseases. Though the abundance and roles of some RNA modifications remain contentious, the epitranscriptome is thought to be especially relevant in stem cell biology and neurobiology. In particular, m6A occurs at the highest levels in the brain and plays major roles in embryonic stem cell differentiation, brain development, and neurodevelopmental disorders. However, studies in these areas have reported conflicting results on epitranscriptomic regulation of stem cell pluripotency and mechanisms in neural development. In this review we provide an overview of the current understanding of several RNA modifications and disentangle the various findings on epitranscriptomic regulation of stem cell biology and neural development.


Assuntos
Adenosina/metabolismo , Neurogênese/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Células-Tronco/citologia , Diferenciação Celular/fisiologia , Humanos , Processamento de Proteína Pós-Traducional/fisiologia
19.
Cell Rep ; 31(3): 107537, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320663

RESUMO

In addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here, we show that knocking out myosin IIA and IIB (myosin IIA/B) in retinal ganglion cells alone, either before or after optic nerve crush, induces significant optic nerve regeneration. Combined Lin28a overexpression and myosin IIA/B knockout lead to an additive promoting effect and long-distance axon regeneration. Immunostaining, RNA sequencing, and western blot analyses reveal that myosin II deletion does not affect known axon regeneration signaling pathways or the expression of regeneration-associated genes. Instead, it abolishes the retraction bulb formation and significantly enhances the axon extension efficiency. The study provides clear evidence that directly targeting neuronal cytoskeleton is sufficient to induce significant CNS axon regeneration and that combining altered gene expression in the soma and modified cytoskeletal dynamics in the axon is a promising approach for long-distance CNS axon regeneration.


Assuntos
Nervo Óptico/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Miosinas , Regeneração Nervosa , Células Ganglionares da Retina/metabolismo
20.
Neuron ; 105(2): 293-309.e5, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31901304

RESUMO

The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular/fisiologia , Metiltransferases/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Oligodendroglia/fisiologia , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA