Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701189

RESUMO

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Assuntos
Linfócitos B , Citocinas , Encefalomielite Autoimune Experimental , Inflamação , Esclerose Múltipla , Fosforilação Oxidativa , Animais , Esclerose Múltipla/imunologia , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Camundongos , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Adulto , Trifosfato de Adenosina/metabolismo , Pessoa de Meia-Idade
2.
J Immunol ; 208(7): 1566-1584, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321883

RESUMO

The BCR comprises a membrane-bound Ig that is noncovalently associated with a heterodimer of CD79A and CD79B. While the BCR Ig component functions to sense extracellular Ag, CD79 subunits contain cytoplasmic ITAMs that mediate intracellular propagation of BCR signals critical for B cell development, survival, and Ag-induced activation. CD79 is therefore an attractive target for Ab and chimeric Ag receptor T cell therapies for autoimmunity and B cell neoplasia. Although the mouse is an attractive model for preclinical testing, due to its well-defined immune system, an obstacle is the lack of cross-reactivity of candidate therapeutic anti-human mAbs with mouse CD79. To overcome this problem, we generated knockin mice in which the extracellular Ig-like domains of CD79A and CD79B were replaced with human equivalents. In this study, we describe the generation and characterization of mice expressing chimeric CD79 and report studies that demonstrate their utility in preclinical analysis of anti-human CD79 therapy. We demonstrate that human and mouse CD79 extracellular domains are functionally interchangeable, and that anti-human CD79 lacking Fc region effector function does not cause significant B cell depletion, but induces 1) decreased expression of plasma membrane-associated IgM and IgD, 2) uncoupling of BCR-induced tyrosine phosphorylation and calcium mobilization, and 3) increased expression of PTEN, consistent with the levels observed in anergic B cells. Finally, anti-human CD79 treatment prevents disease development in two mouse models of autoimmunity. We also present evidence that anti-human CD79 treatment may inhibit Ab secretion by terminally differentiated plasmablasts and plasma cells in vitro.


Assuntos
Linfócitos B , Ativação Linfocitária , Animais , Anticorpos Monoclonais/uso terapêutico , Anergia Clonal , Modelos Animais de Doenças , Camundongos
3.
Sci Rep ; 11(1): 11154, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045583

RESUMO

Sjögren's syndrome (SS) is a complex autoimmune disease associated with lymphocytic infiltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fibrotic responses in SS. To define molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non-SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non-SS samples, there was a potential intermediate state overlapping clustering of SS and non-SS samples. Differential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN-γ and JAK/STAT-regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identification of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defined by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may offer novel insights into the signals contributing to SS development and progression.


Assuntos
Regulação da Expressão Gênica , Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Adulto , Idoso , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Glândulas Salivares/patologia , Transdução de Sinais/fisiologia , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia
4.
Arthritis Rheumatol ; 73(4): 631-640, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33058491

RESUMO

OBJECTIVE: Primary Sjögren's syndrome (SS) is characterized by a lymphocytic infiltration of salivary glands (SGs) and the presence of an interferon (IFN) signature. SG epithelial cells (SGECs) play an active role in primary SS pathophysiology. We undertook this study to examine the interactions between SGECs and T cells in primary SS and the role of the interleukin-7 (IL-7)/IFN axis. METHODS: Primary cultured SGECs from control subjects and patients with primary SS were stimulated with poly(I-C), IFNα, or IFNγ. T cells were sorted from blood and stimulated with IL-7. CD25 expression was assessed by flow cytometry. SG explants were cultured for 4 days with anti-IL-7 receptor (IL-7R) antagonist antibody (OSE-127), and transcriptomic analysis was performed using the NanoString platform. RESULTS: Serum IL-7 level was increased in patients with primary SS compared to controls and was associated with B cell biomarkers. IL7R expression was decreased in T cells from patients with primary SS compared to controls. SGECs stimulated with poly(I-C), IFNα, or IFNγ secreted IL-7. IL-7 stimulation increased the activation of T cells, as well as IFNγ secretion. Transcriptomic analysis of SG explants showed a correlation between IL7 and IFN expression. Finally, explants cultured with anti-IL-7R antibody showed decreased IFN-stimulated gene expression. CONCLUSION: These results suggest the presence of an IL-7/IFNγ amplification loop involving SGECs and T cells in primary SS. IL-7 was secreted by SGECs stimulated with type I or type II IFN and, in turn, activated T cells that secrete type II IFN. An anti-IL-7R antibody decreased the IFN signature in T cells in primary SS and could be of therapeutic interest.


Assuntos
Células Epiteliais/metabolismo , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Interleucina-7/farmacologia , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Linfócitos T/metabolismo , Adulto , Idoso , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-7/imunologia , Masculino , Pessoa de Meia-Idade , Glândulas Salivares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
5.
Ann Rheum Dis ; 79(11): 1468-1477, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843324

RESUMO

OBJECTIVE: Primary Sjögren's syndrome (pSS) is characterised by chronic hyperactivation of B lymphocytes. Salivary gland epithelial cells (SGECs) could play a role in promoting B-lymphocyte activation within the target tissue. We aimed to study the interactions between SGECs from patients with pSS or controls and B lymphocytes. METHODS: Patients had pSS according to 2016 European League Against Rheumatism/American College of Rheumatology criteria. Gene expression analysis of SGECs and B lymphocytes from pSS and controls isolated from salivary gland biopsies and blood was performed by RNA-seq. SGECs from pSS and controls were cocultured with B-lymphocytes sorted from healthy donor blood and were stimulated. Transwell and inhibition experiments were performed. RESULTS: Gene expression analysis of SGECs identified an upregulation of interferon signalling pathway and genes involved in immune responses (HLA-DRA, IL-7 and B-cell activating factor receptor) in pSS. Activation genes CD40 and CD48 were upregulated in salivary gland sorted B lymphocytes from patients with pSS. SGECs induced an increase in B-lymphocyte survival, which was higher for SGECs from patients with pSS than controls. Moreover, when stimulated with poly(I:C), SGECs from patients with pSS induced higher activation of B-lymphocytes than those from controls. This effect depended on soluble factors. Inhibition with anti-B-cell activating factor, anti-A proliferation-inducing ligand, anti-interleukin-6-R antibodies, JAK1/3 inhibitor or hydroxychloroquine had no effect, conversely to leflunomide, Bruton's tyrosine kinase (BTK) or phosphatidyl-inositol 3-kinase (PI3K) inhibitors. CONCLUSIONS: SGECs from patients with pSS had better ability than those from controls to induce survival and activation of B lymphocytes. Targeting a single cytokine did not inhibit this effect, whereas leflunomide, BTK or PI3K inhibitors partially decreased B-lymphocyte viability in this model. This gives indications for future therapeutic options in pSS.


Assuntos
Linfócitos B/imunologia , Células Epiteliais/imunologia , Ativação Linfocitária/imunologia , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Idoso , Linfócitos B/metabolismo , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândulas Salivares/metabolismo , Transcriptoma
6.
Elife ; 62017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492365

RESUMO

Salivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of Yap in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors. We further show that epithelial deletion of the Lats1 and Lats2 genes, which encode kinases that restrict nuclear Yap localization, results in morphogenesis defects accompanied by an expansion of Krt5/Krt14-positive cells. Collectively, our data indicate that Yap-induced Epiregulin signaling promotes the identity of SMG ductal progenitors and that removal of nuclear Yap by Lats1/2-mediated signaling is critical for proper ductal maturation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Epirregulina/metabolismo , Epitélio/embriologia , Morfogênese , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Glândula Submandibular/embriologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Padronização Corporal , Proteínas de Ciclo Celular , Deleção de Genes , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Células-Tronco/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
7.
Rheumatology (Oxford) ; 56(2): 303-312, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27803305

RESUMO

OBJECTIVE: The relevance of the Th17 pathway in primary SS (pSS) is unclear. Published studies have relied on restimulating circulating CD161+ T cells in vitro for quantitation of IL-17-producing cells. While CD161 marks all IL-17+ T cells, it is also expressed by other Th subsets. The aim of this study was to directly analyse retinoic acid receptor-related orphan nuclear receptor (ROR)-γ expressing and non-expressing subsets of CD161+ T cells to determine the relevance of the Th17 pathway in pSS. METHODS: We quantitated the frequencies of both CD161- and RORγ-expressing T cells by comparative flow cytometry in peripheral blood mononuclear cells from a well-stratified cohort of pSS patients and control subjects. We also analysed the expression of antigen D-related HLA (HLA-DR) and CD161 in labial salivary glands from nine subjects undergoing a diagnostic biopsy. RESULTS: While the frequencies of both RORγ+ and RORγ- subsets of CD161+ CD4+ T cells were increased in peripheral blood from pSS patients, the increase in the RORγ+ subset positively correlated with humoral manifestations of the disease (anti-SSA/SSB autoantibodies and hypergammaglobulinaemia), but not with disease activity, and vice versa for the RORγ- subset. An increased frequency of HLA-DR+ CD161+CD4+ T cells was observed in labial salivary gland biopsies from pSS patients, suggesting chronic activation of CD161+CD4+ T cells in the target tissue of the disease. CONCLUSION: In addition to pointing to CD161 as a marker of a pathogenic subset of CD4+ T cells in pSS patients, our data indicate that even though the RORγ+ (Th17) CD161+ subset might contribute to humoral manifestations of the disease, the RORγ- (non-Th17) CD161+ subset is the one associated with disease activity in pSS patients.


Assuntos
Síndrome de Sjogren/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Adulto , Idoso , Anticorpos Antinucleares/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Antígenos HLA-DR/metabolismo , Humanos , Hipergamaglobulinemia/imunologia , Imunidade Humoral/imunologia , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Glândulas Salivares Menores/metabolismo , Síndrome de Sjogren/metabolismo , Subpopulações de Linfócitos T/metabolismo , Células Th17/metabolismo
8.
J Immunol ; 197(10): 3806-3819, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815440

RESUMO

Despite being one of the most common rheumatologic diseases, there is still no disease-modifying drug for primary Sjögren's syndrome (pSS). Advancing our knowledge of the target tissue has been limited by the low dimensionality of histology techniques and the small size of human salivary gland biopsies. In this study, we took advantage of a molecularly validated mouse model of pSS to characterize tissue-infiltrating CD4+ T cells and their regulation by the lymphotoxin/LIGHT signaling axis. Novel cell subsets were identified by combining highly dimensional flow and mass cytometry with transcriptomic analyses. Pharmacologic modulation of the LTßR signaling pathway was achieved by treating mice with LTßR-Ig, a therapeutic intervention currently being tested in pSS patients (Baminercept trial NCT01552681). Using these approaches, we identified two novel CD4+ T cell subsets characterized by high levels of PD1: Prdm1+ effector regulatory T cells expressing immunoregulatory factors, such as Il10, Areg, Fgl2, and Itgb8, and Il21+ effector conventional T cells expressing a pathogenic transcriptional signature. Mirroring these observations in mice, large numbers of CD4+PD1+ T cells were detected in salivary glands from Sjögren's patients but not in normal salivary glands or kidney biopsies from lupus nephritis patients. Unexpectedly, LTßR-Ig selectively halted the recruitment of PD1- naive, but not PD1+, effector T cells to the target tissue, leaving the cells with pathogenic potential unaffected. Altogether, this study revealed new cellular players in pSS pathogenesis, their transcriptional signatures, and differential dependency on the lymphotoxin/LIGHT signaling axis that help to interpret the negative results of the Baminercept trial and will guide future therapeutic interventions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptor beta de Linfotoxina/metabolismo , Linfotoxina-alfa/metabolismo , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/fisiopatologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Anfirregulina/genética , Animais , Biópsia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucinas/genética , Rim/patologia , Nefrite Lúpica/imunologia , Linfotoxina-alfa/genética , Camundongos , Glândulas Salivares/patologia , Transdução de Sinais , Síndrome de Sjogren/terapia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores
9.
Clin Immunol ; 169: 69-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27352977

RESUMO

B-cell activating factor (BAFF) levels are increased in rheumatoid arthritis, lupus and primary Sjögren's syndrome (pSS). However, BAFF contribution to pathogenesis is not completely understood. In pSS, immune infiltration of the salivary and lacrimal glands leads to xerostomia and xerophtalmia. Glandular B cell hyperactivation, differentiation into germinal center (GC)-like structures and plasma cell accumulation are histopathological hallmarks that were attributed to increased BAFF. Here, we experimentally tested this hypothesis by overexpressing BAFF in a mouse model of pSS. BAFF overexpression enhanced lymphocytic infiltration and MHCII expression on B cells. Increased BAFF also induced B cell differentiation into GC B cells within the autoimmune target tissue. However, even in these conditions, GC B cells only accounted for <1% of glandular B cells, demonstrating that BAFF is not efficiently promoting ectopic GC formation in pSS and warranting further investigation of therapeutics targeting both BAFF and the related TNF-family member APRIL.


Assuntos
Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Síndrome de Sjogren/imunologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular/genética , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imuno-Histoquímica , Aparelho Lacrimal/imunologia , Aparelho Lacrimal/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Xeroftalmia/genética , Xeroftalmia/imunologia , Xeroftalmia/metabolismo , Xerostomia/genética , Xerostomia/imunologia , Xerostomia/metabolismo
10.
J Allergy Clin Immunol ; 137(6): 1809-1821.e12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27045581

RESUMO

BACKGROUND: Mass cytometry has recently emerged as a promising tool for clinical research. However, few studies have demonstrated its benefit for patient stratification and biomarker identification. Primary Sjögren's syndrome (pSS) is a prototype of chronic autoimmune disease, the pathogenesis of which remains unclear and for which treatment does not exist. OBJECTIVE: This observational case-control study was designed to discover new cellular biomarkers and therapeutic targets in patients with pSS. METHODS: Forty-nine patients with pSS and 45 control subjects were enrolled for clinical evaluation and mass cytometry quantification of 34 protein markers in blood. For a third of these subjects, matched labial salivary gland biopsy specimens were also analyzed by mass cytometry and immunohistochemistry. RESULTS: In salivary gland biopsy specimens from patients with pSS, we identified a high number of activated CD8(+) T cells, terminally differentiated plasma cells, and activated epithelial cells, pointing to new pathogenic mechanisms for future clinical intervention. In blood, we identified a 6-cell disease signature defined by decreased numbers of CD4 and memory B lymphocytes, decreased plasmacytoid dendritic cell numbers, and increased representation of activated CD4 and CD8 T cells and plasmablasts. These blood cellular components correlated with clinical parameters and, when taken together, clustered patients into subsets with distinct disease activity and glandular inflammation. CONCLUSION: This first application of mass cytometry to a well-stratified clinical cohort and small biopsy tissues establishes the benefits of such an approach for the discovery of new biomarkers and therapeutic targets. Similar high-dimensional immunophenotyping strategies could be implemented in longitudinal and interventional clinical settings in this and other disease areas.


Assuntos
Biomarcadores , Imunofenotipagem , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Síndrome de Sjogren/diagnóstico , Adulto , Biópsia , Linfócitos T CD8-Positivos , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem/métodos , Masculino , Pessoa de Meia-Idade , Plasmócitos , Reprodutibilidade dos Testes , Glândulas Salivares Menores/metabolismo , Glândulas Salivares Menores/patologia
11.
Proc Natl Acad Sci U S A ; 112(48): 14942-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627244

RESUMO

FoxP3(+) T regulatory (Treg) cells have a fundamental role in immunological tolerance, with transcriptional and functional phenotypes that demarcate them from conventional CD4(+) T cells (Tconv). Differences between these two lineages in the signaling downstream of T-cell receptor-triggered activation have been reported, and there are different requirements for some signaling factors. Seeking a comprehensive view, we found that Treg cells have a broadly dampened activation of several pathways and signaling nodes upon TCR-mediated activation, with low phosphorylation of CD3ζ, SLP76, Erk1/2, AKT, or S6 and lower calcium flux. In contrast, STAT phosphorylation triggered by interferons, IL2 or IL6, showed variations between Treg and Tconv in magnitude or choice of preferential STAT activation but no general Treg signaling defect. Much, but not all, of the Treg/Tconv difference in TCR-triggered responses could be attributed to lower responsiveness of antigen-experienced cells with CD44(hi) or CD62L(lo) phenotypes, which form a greater proportion of the Treg pool. Candidate regulators were tested, but the Treg/Tconv differential could not be explained by overexpression in Treg cells of the signaling modulator CD5, the coinhibitors PD-1 and CTLA4, or the regulatory phosphatase DUSP4. However, transcriptome profiling in Dusp4-deficient mice showed that DUSP4 enhances the expression of a segment of the canonical Treg transcriptional signature, which partially overlaps with the TCR-dependent Treg gene set. Thus, Treg cells, likely because of their intrinsically higher reactivity to self, tune down TCR signals but seem comparatively more attuned to cytokines or other intercellular signals.


Assuntos
Sinalização do Cálcio/imunologia , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Sinalização do Cálcio/genética , Fatores de Transcrição Forkhead/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
12.
EMBO J ; 29(7): 1285-98, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20150895

RESUMO

Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Dinaminas/metabolismo , Regulação da Expressão Gênica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Lisina/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Linfócitos T/citologia
13.
Semin Immunopathol ; 32(2): 117-25, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20107804

RESUMO

Linker for activation of T cells (LAT) is a membrane adaptor protein that is expressed in T cells and coordinates the assembly of a multiprotein complex-the LAT signalosome-that links the T cell-specific and the ubiquitous components of the T cell antigen receptor (TCR) signaling pathway. The present review focuses on recent LAT knock-in mice that were found to develop lymphoproliferative disorders involving polyclonal CD4(+) T cells that produced excessive amounts of T helper-type 2 cytokines. These mouse models revealed that LAT constitutes more than just a positive regulator of TCR signaling and plays a negative regulatory role that contributes to terminate antigen-driven T cell responses by exerting a repressive function on components of the TCR signaling cassette that lie upstream of LAT or function independently of LAT. In the absence of such a LAT-operated negative regulatory loop that is intrinsic to conventional CD4(+) T cells and of no lesser importance than the extrinsic regulatory mechanisms mediated by regulatory T cells, physiologic, antigen-specific CD4(+) T cell responses evolve into chronic pro-inflammatory responses that perpetuate themselves in a manner that does not depend on engagement of the TCR and that induce the production of massive amounts of antibodies and autoantibodies in a major histocompatibility complex-II-independent, "quasi-mitogenic" mode. As discussed, these data underscore that a novel immunopathology proper to defective LAT signalosomes is likely taking shape, and we propose to call it "LAT signaling pathology."


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Técnicas de Introdução de Genes , Transtornos Linfoproliferativos/genética , Camundongos , Complexos Multiproteicos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/patologia
14.
Immunity ; 31(2): 197-208, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19682930

RESUMO

Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Transtornos Linfoproliferativos/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Fosfoproteínas/genética , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia
15.
J Immunol ; 182(5): 2680-9, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234162

RESUMO

Mutant mice in which tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a lymphoproliferative disorder involving polyclonal CD4 effector T cells that produce massive amounts of IL-4 and trigger severe Th2 inflammation. Naive CD4 T cells can themselves produce IL-4 and thereby initiate a self-reinforcing positive regulatory loop that involves the STAT6 transcription factor and leads to Th2 polarization. We determined the functional outcome that results when Lat(Y136F) T cells differentiate in the absence of such STAT6-dependent regulatory loop. The lack of STAT6 had no effect on the timing and magnitude of the lymphoproliferative disorder. However, in Lat(Y136F) mice deprived of STAT6, the expanding CD4 T cell population was dominated by Th1 effector cells that triggered B cell proliferation, elevated IgG2a and IgG2b levels as well as the production of autoantibodies. In contrast to Lat(Y136F) mice that showed no CD8 T cell expansion, the CD8 T cells present in Lat(Y136F) mice deprived of STAT6 massively expanded and acquired effector potential. Therefore, the lack of STAT6 is sufficient to convert the Th2 lymphoproliferative disorder that characterizes Lat(Y136F) mice into a lymphoproliferative disorder that is dominated by Th1 and CD8 effector T cells. The possibility to dispose of a pair of mice that differs by a single gene and develops in the absence of deliberate immunization large numbers of Th cells with almost reciprocal polarization should facilitate the identification of genes involved in the control of normal and pathological Th cell differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos/imunologia , Linfócitos T CD8-Positivos/imunologia , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/patologia , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fator de Transcrição STAT6/deficiência , Células Th1/imunologia , Células Th2/patologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Substituição de Aminoácidos/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transtornos Linfoproliferativos/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fosfoproteínas/fisiologia , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/fisiologia , Células Th1/metabolismo , Células Th1/patologia , Células Th2/imunologia , Células Th2/metabolismo
16.
Nat Immunol ; 9(5): 522-32, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18408722

RESUMO

Antigen recognition by T cell antigen receptors (TCRs) is thought to 'unmask' a proline-rich sequence (PRS) present in the CD3epsilon cytosolic segment, which allows it to trigger T cell activation. Using 'knock-in' mice with deletion of the PRS, we demonstrate here that elimination of the CD3epsilon PRS had no effect on mature T cell responsiveness. In contrast, in preselection CD4+CD8+ thymocytes, the CD3epsilon PRS acted together with the adaptor protein SLAP to promote CD3zeta degradation, thereby contributing to downregulation of TCR expression on the cell surface. In addition, analysis of CD4+CD8+ thymocytes of TCR-transgenic mice showed that the CD3epsilon PRS enhanced TCR sensitivity to weak ligands. Our results identify previously unknown functions for the evolutionarily conserved CD3epsilon PRS at the CD4+CD8+ developmental stage and suggest a rather limited function in mature T cells.


Assuntos
Complexo CD3/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Composição de Bases , Complexo CD3/imunologia , Complexo CD3/metabolismo , Antígenos CD4/análise , Antígenos CD8/análise , Diferenciação Celular , Deleção de Genes , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prolina , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Linfócitos T/citologia , Timo/imunologia
17.
J Immunol ; 180(3): 1565-75, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18209052

RESUMO

Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Autoimunes/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/genética , Fosfoproteínas/genética , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Autoanticorpos/sangue , Doenças Autoimunes/genética , Antígenos CD4/análise , Proliferação de Células , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-7/metabolismo , Transtornos Linfoproliferativos/genética , Camundongos , Camundongos Mutantes , Receptores de Antígenos de Linfócitos T/imunologia
18.
Novartis Found Symp ; 281: 93-100; discussion 100-2, 208-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17534068

RESUMO

LAT (linker for activation of T cells) is an integral membrane adaptor protein that constitutes in T cells a major substrate of the ZAP-70 protein tyrosine kinase. LAT coordinates the assembly of a multiprotein signalling complex through phosphotyrosine-based motifs present within its intracytoplasmic segment. The resulting 'LAT signalosome' links the TCR to the main intracellular signalling pathways that regulate T cell development and T cell function. Early studies using transformed T cell lines suggested that LAT acts primarily as a positive regulator of T cell receptor (TCR) signalling. The partial or complete inhibition of T cell development observed in several mouse lines harbouring mutant forms of LAT was congruent with that view. More recently, LAT 'knock-ins' harbouring point mutations in the four COOH-terminal tyrosine residues, were found to develop lymphoproliferative disorders involving polyclonal T cells that produced high amounts of T helper-type 2 (Th2) cytokines. This unexpected finding revealed that LAT also constitutes a negative regulator of TCR signalling and T cell homeostasis. As discussed, the available data underscore that a novel immunopathology proper to defective LAT signalosome is likely taking shape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtornos Linfoproliferativos/genética , Proteínas de Membrana/genética , Transdução de Sinais/imunologia , Células Th2/citologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Humanos , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Mutação/genética , Células Th2/imunologia
19.
Blood ; 107(6): 2364-72, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16291591

RESUMO

Natural killer (NK) cells express an array of activating receptors that associate with DAP12 (KARAP), CD3zeta, and/or FcRgamma ITAM (immunoreceptor tyrosine-based activation motif)-bearing signaling subunits. In T and mast cells, ITAM-dependent signals are integrated by critical scaffolding elements such as LAT (linker for activation of T cells) and NTAL (non-T-cell activation linker). Using mice that are deficient for ITAM-bearing molecules, LAT or NTAL, we show that NK cell cytotoxicity and interferon-gamma secretion are initiated by ITAM-dependent and -independent as well as LAT/NTAL-dependent and -independent pathways. The role of these various signaling circuits depends on the target cell as well as on the activation status of the NK cell. The multiplicity and the plasticity of the pathways that initiate NK cell effector functions contrast with the situation in T cells and B cells and provide an explanation for the resiliency of NK cell effector functions to various pharmacologic inhibitors and genetic mutations in signaling molecules.


Assuntos
Células Matadoras Naturais/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Citotoxicidade Imunológica , Interferon gama/metabolismo , Células Matadoras Naturais/fisiologia , Proteínas de Membrana , Camundongos , Fosfoproteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA