Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 288, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970676

RESUMO

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area. The results reveal that, during the monitoring period, PAH levels increased on average by 43%, 61%, and 37% in the zone of the prevailing wind direction, in the area proximate to the power plant, and the zone distant from it, respectively. The site, which has a radius of 4.5 km in the prevailing wind direction, exhibited the highest ecological and human health impacts. Additionally, a strong correlation was observed between environmental and human health impacts, depending on the distance from the power plant, particularly in areas with the prevailing wind direction. These insights contribute to a comprehensive understanding of the intricate dynamics linking power plant emissions, PAHs contamination, and their far-reaching consequences on the environment and human health.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Centrais Elétricas , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Vento , Avaliação do Impacto na Saúde
2.
Ecotoxicol Environ Saf ; 282: 116670, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981388

RESUMO

The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10 mg mL-1. The results showed that a low concentration (0.3 mg mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3 mg mL-1 nnZnO increased respiration efficiency in both leaves (17 %) and roots (38 %). Under the influence of blZnO and nnZnO at medium (2 mg mL-1) and high (10 mg mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28 % to 87 % was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36 %) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10 mg mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10 mg mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.


Assuntos
Respiração Celular , Hordeum , Folhas de Planta , Raízes de Plantas , Espécies Reativas de Oxigênio , Óxido de Zinco , Óxido de Zinco/toxicidade , Hordeum/efeitos dos fármacos , Hordeum/genética , Folhas de Planta/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Plântula/efeitos dos fármacos , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Oxirredutases/genética , Oxirredutases/metabolismo
3.
Environ Res ; 252(Pt 3): 119080, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714220

RESUMO

Coastal cities are major centers of economic activity, which at the same time has negative consequences for the environment. The present study aimed to determine the concentrations and sources of PTEs in the urban soils of Taganrog, as well as to assess the ecological and human health risks. A total of 47 urban and 5 background topsoils samples were analyzed by ICP-MS and ICP-AES. A significant excess of Cu, Zn, and Sb was noted in urban soils compared to the upper continental crust and average world-soil (1.7-2.9 times). Statistical analysis showed that the elements in soils were of geogenic, mixed and anthropogenic origin. According to the single pollution index (PI), the greatest danger of soil pollution was represented by anthropogenic elements, namely Cu, W, Pb, Zn, Cd, and Sn, the levels of which were increased in residential and industrial areas. The median contents of As, Mn, Cr, Sr, Mo, Sb, Cu, W, Pb, and Zn were 1.1-2.1 times higher, while Cd and Sn were 2.5 folds higher in the urban soils compared to the background ones. The total pollution index (ZC) showed that only 15% of the soils had high level of pollution, which is typical for the industrial areas. Overall ecological risks were negligible or low in 92% of soils, and were mainly due to elevated levels of Cu, Zn, As, and Pb. Non-carcinogenic risks to humans were mainly related to exposure to La and Pb. The hazard index (HI) values for all PTEs were less than ten, indicating that overall non-carcinogenic risk for adults and children was low-to-moderate and, moderate, respectively. The total carcinogenic risk (TCR) exceeded threshold and corresponded to low risk, with Pb, As, and Co being the most important contributors. Thus, the industrial activities of Taganrog is the main source of priority pollutants.


Assuntos
Cidades , Monitoramento Ambiental , Poluentes do Solo , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Metais Pesados/análise
4.
Environ Res ; 246: 118045, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160969

RESUMO

Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.


Assuntos
Compostos de Cádmio , Hordeum , Nanopartículas Metálicas , Nanopartículas , Hordeum/metabolismo , Cádmio , Óxidos/química , Nanopartículas/toxicidade , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835172

RESUMO

Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on Solanum lycopersicum L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem. A dose-dependent response in phytotoxicity were noted, especially in the biomass of the roots and shoots, at doses of 40 and 60 MPC BaP and the accumulation of BaP in S. lycopersicum tissues. Physiological and biochemical response indices were severely damaged based on applied doses of BaP. During the histochemical analysis of the localization of superoxide in the leaves of S. lycopersicum, formazan spots were detected in the area near the leaf's veins. The results of a significant increase in malondialdehyde (MDA) from 2.7 to 5.1 times, proline 1.12- to 2.62-folds, however, a decrease in catalase (CAT) activity was recorded by 1.8 to 1.1 times. The activity of superoxide dismutase (SOD) increased from 1.4 to 2, peroxidase (PRX) from 2.3 to 5.25, ascorbate peroxidase (APOX) by 5.8 to 11.5, glutathione peroxidase (GP) from 3.8 to 7 times, respectively. The structure of the tissues of the roots and leaves of S. lycopersicum in the variants with BaP changed depending on the dose: it increased the intercellular space, cortical layer, and the epidermis, and the structure of the leaf tissues became looser.


Assuntos
Benzo(a)pireno , Solanum lycopersicum , Antioxidantes , Benzo(a)pireno/química , Benzo(a)pireno/toxicidade , Catalase , Glutationa Peroxidase , Solo/química , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Superóxido Dismutase
6.
Environ Res ; 216(Pt 3): 114748, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370809

RESUMO

The functioning of the photosynthetic apparatus in barley (Hordeum vulgare L.) after 7-days of exposure to bulk (b-ZnO) and nanosized ZnO (n-ZnO) (300, 2000, and 10,000 mg/l) has been investigated. An impact on the amount of chlorophylls, photosynthetic efficiency, as well as the zinc accumulation in chloroplasts was demonstrated. Violation of the chloroplast fine structure was revealed. These changes were generally more pronounced with n-ZnO exposure, especially at high concentrations. For instance, the chlorophyll deficiency under 10,000 mg/l b-ZnO treatment was 31% and with exposure to 10,000 mg/l n-ZnO, the chlorophyll deficiency was already 52%. The expression analysis of the photosynthetic genes revealed their different sensitivity to b-ZnO and n-ZnO exposure. The genes encoding subunits of photosystem II (PSII) and, to a slightly lesser extent, photosystem I (PSI) showed the highest suppression of transcriptional levels. The mRNA levels of the subunits of cytochrome-b6f, NADH dehydrogenase, ribulose-1,5-bisphosphate carboxylase and ATP synthase, which, in addition to linear electron flow (LEF), participate in cyclic electron flow (CEF) and autotrophic CO2 fixation, were more stable or increased under b-ZnO and n-ZnO treatments. At the same time, CEF was increased. It was assumed that under the action of b-ZnO and n-ZnO, the processes of LEF are disrupted, and CEF is activated. This allows the plant to prevent photo-oxidation and compensate for the lack of ATP for the CO2 fixation process, thereby ensuring the stability of photosynthetic function in the initial stages of stress factor exposure. The study of photosynthetic structures of crops is important from the point of view of understanding the risks of reducing the production potential and the level of food security due to the growing use of nanoparticles in agriculture.


Assuntos
Hordeum , Hordeum/metabolismo , Dióxido de Carbono , Transporte de Elétrons , Folhas de Planta , Clorofila/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Heliyon ; 8(11): e11893, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468119

RESUMO

Agriculture is a backbone of global economy and most of the population relies on this sector for their livelihood. Chitosan as a biodegradable material thus can be explored for in various fields in its nano form to replace non-biodegradable and toxic compounds. The chitosan has appealing properties like biocompatibility, non-toxicity, biodegradability, and low allergenic, making it useful in several applications including in agriculture sector. Because of their unique properties, chitosan nanoparticles (ChNPs) are extensively applied as a bioagent in various biological and biomedical processes, including wastewater treatment, plant growth promoter, fungicidal agent, wound healing, and scaffold for tissue engineering. Furthermore, the biocompatibility of chitosan nanoparticles (ChNPs) is reported to have other biological properties such as anti-cancerous, antifungal, antioxidant activities, even induces an immune response in the plant, and helps manage biotic and abiotic stresses. Chitosan can also find its application in wastewater treatment, hydrating agents in cosmetics, the food industry, paper, and the textile industry as adhesive, drug-delivering agent in medical as well as for bioimaging. Since chitosan has low toxicity, the nano-formulation of chitosan can be used for the controlled release of fertilizers, pesticides, and plant growth promoters in agriculture fields. The ChNPs applications in precision farming being a novel approach in recent developments. Here we have comprehensively reviewed the major points in this review are; the synthesis of ChNPs by biological resources, their modification and formulation for increasing its applicability, their modified types, and the different agricultural applications of ChNPs.

8.
Sci Rep ; 12(1): 19072, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351994

RESUMO

The primary objective of this investigation was to determine the hub genes of hepatocellular carcinoma (HCC) through an in silico approach. In the current context of the increased incidence of liver cancers, this approach could be a useful prognostic biomarker and HCC prevention target. This study aimed to examine hub genes for immune cell infiltration and their good prognostic characteristics for HCC research. Human genes selected from databases (Gene Cards and DisGeNET) were used to identify the HCC markers. Further, classification of the hub genes from communicating genes was performed using data derived from the targets' protein-protein interaction (PPI) platform. The expression as well as survival studies of all these selected genes were validated by utilizing databases such as GEPIA2, HPA, and immune cell infiltration. Based on the studies, five hub genes (TP53, ESR1, AKT1, CASP3, and JUN) were identified, which have been linked to HCC. They may be an important prognostic biomarker and preventative target of HCC. In silico analysis revealed that out of five hub genes, the TP53 and ESR1 hub genes potentially act as key targets for HCC prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Biologia Computacional , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
9.
Front Plant Sci ; 13: 883970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340341

RESUMO

Complete and balanced nutrition has always been the first line of plant defense due to the direct involvement of mineral elements in plant protection. Mineral elements affect plant health directly by modulating the activity of redox enzymes or improving the plant vigor indirectly by altering root exudates, and changing microflora population dynamics, rhizosphere soil nutrient content, pH fluctuation, lignin deposition, and phytoalexin biosynthesis. Nitrogen (N) is one of the most important macronutrients having a significant impact on the host-pathogen axis. N negatively affects the plant's physical defense along with the production of antimicrobial compounds, but it significantly alleviates defense-related enzyme levels that can eventually assist in systemic resistance. Potassium (K) is an essential plant nutrient, when it is present in adequate concentration, it can certainly increase the plant's polyphenolic concentrations, which play a critical role in the defense mechanism. Although no distinguished role of phosphorus (P) is observed in plant disease resistance, a high P content may increase the plant's susceptibility toward the invader. Manganese (Mn) is one of the most important micronutrients, which have a vital effect on photosynthesis, lignin biosynthesis, and other plant metabolic functions. Zinc (Zn) is a part of enzymes that are involved in auxin synthesis, infectivity, phytotoxin, and mycotoxin production in pathogenic microorganisms. Similarly, many other nutrients also have variable effects on enhancing or decreasing the host susceptibility toward disease onset and progression, thereby making integrative plant nutrition an indispensable component of sustainable agriculture. However, there are still many factors influencing the triple interaction of host-pathogen-mineral elements, which are not yet unraveled. Thereby, the present review has summarized the recent progress regarding the use of macro- and micronutrients in sustainable agriculture and their role in plant disease resistance.

11.
Sci Rep ; 12(1): 12414, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858932

RESUMO

The iron impregnated fungal bio-filter (IIFB) discs of luffa sponge containing Phanerochaete chrysosporium mycelia have been used for the removal of As(III) from water. Two different forms of same biomass viz. free fungal biomass (FFB) and modified free fungal biomass (chemically modified and iron impregnated; CFB and IIFB) have been simultaneously investigated to compare the performance of immobilization, chemo-tailoring and iron impregnation for remediation of As(III). IIFB showed highest uptake capacity and percentage removal of As(III), 1.32 mg/g and 92.4% respectively among FFB, CFB and IIFB. Further, the application of RSM and ANN-GA based mathematical model showed a substantial increase in removal i.e. 99.2% of As(III) was filtered out from water at optimised conditions i.e. biomass dose 0.72 g/L, pH 7.31, temperature 42 °C, and initial As(III) concentration 1.1 mg/L. Isotherm, kinetic and thermodynamic studies proved that the process followed monolayer sorption pattern in spontaneous and endothermic way through pseudo-second order kinetic pathway. Continuous mode of As(III) removal in IIFB packed bed bioreactor, revealed increased removal of As(III) from 76.40 to 88.23% with increased column height from 5 to 25 cm whereas the removal decreased from 88.23 to 69.45% while increasing flow rate from 1.66 to 8.30 mL/min. Moreover, the IIFB discs was regenerated by using 10% NaOH as eluting agent and evaluated for As(III) removal for four sorption-desorption cycles, showing slight decrease of their efficiency by 1-2%. SEM-EDX, pHzpc, and FTIR analysis, revealed the involvement of hydroxyl and amino surface groups following a non-electrostatic legend exchange sorption mechanism during removal of As(III).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Ferro , Cinética , Termodinâmica , Água , Poluentes Químicos da Água/metabolismo
12.
Environ Geochem Health ; 44(2): 409-432, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32803735

RESUMO

This study investigated levels and sources of pollution and potential health risks associated with potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust collected from Tyumen city, a large transport centre with one of the highest motorization rates in Russia. Twenty street dust samples were collected from four grades of roads in five different land use areas. Research methods included measurements of physical and chemical properties of street dust, concentrations of 18 PTEs using inductively coupled plasma mass spectrometry, 12 PAHs using high-performance liquid chromatography, and statistical analysis of the data. Concentrations of Ni, Cr, Sb, and Mo, as well as medium and high molecular weight PAHs in urban street dust, were notably higher than in soils within the city, which indicates that transport is the main source of these elements. Concentrations of Cu, Cd, Pb, Zn, Mn, and As in street dust of Tyumen were lower compared to many large cities, while Cr, Ni, and Co were higher. Concentrations of PAH were comparable to other large nonindustrial cities. Total contamination of street dust by both PTEs and PAHs showed more robust relationships with the number of roadway lanes rather than land use. The estimated carcinogenic risks were low in 70% of samples and medium in 30% of samples. Noncarcinogenic risks were attributed to exposure to Co, Ni, V, and As. The total noncarcinogenic risk for adults was found to be negligible, while the risk was found to be moderate for children.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
13.
Environ Geochem Health ; 44(1): 149-177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34027568

RESUMO

Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Animais , Feminino , Humanos , Hidrocarbonetos Clorados/análise , Recém-Nascido , Leite/química , Praguicidas/análise , Placenta , Gravidez
14.
Environ Geochem Health ; 44(1): 221-234, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33864175

RESUMO

Widespread use of zinc oxide nanoparticles (ZnO-NPs) threatens soil, plants, terrestrial and aquatic animals. Thus, it is essential to explore the fate and behavior of NPs in soil and also its mechanism of interaction with soil microbial biodiversity to maintain soil health and quality to accomplish essential ecosystem services. With this background, the model experiment was conducted in the greenhouse to study the impact of ZnO-NPs on soil taking maize as a test crop. The X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and Particles size analysis of engineered NPs confirmed that the material was ZnO-NPs (particle size--65.82 nm). The application of ZnO-NPs resulted in a significant decrease in soil pH. Significantly high EC (0.13 dS m-1) was recorded where ZnO-NPs were applied at the rate of 2.5 mg Zn kg-1 soil over control (0.12 dS m-1). A significant increase in soil available phosphorus was observed on applying ZnO-NPs (15.29 mg kg-1 of soil) as compared to control (11.84 mg kg-1 of soil). Maximum soil available Zn (2.09 mg kg-1) was recorded in ZnO-NPs-amended soil (T11) which was significantly higher than control (0.33 mg kg-1) as well as treatments containing conventional zincatic fertilizers. The inhibition rates of dehydrogenase enzyme activity in the presence of 0.5 mg, 1.25 mg and 2.5 mg ZnO-NPs per kg soil were 31.3, 46.2 and 49.7%, respectively. Soil microbial biomass carbon was significantly reduced (103.33 µg g-1 soil) in soils treated with ZnO-NPs over control (111.33 µg g-1 soil). Soil bacterial count was also significantly lesser (12.33 × 105 CFU) in the case where 2.5 mg kg-1 ZnO-NPs were applied as compared to control (21.33 × 105 CFU). The corresponding decrease in fungal and actinomycetes colony count was 24.16, 37.35, 46.15% and 14.59, 17.97, 22.45% with the application of 0.5 mg, 1.25 mg and 2.5 mg ZnO-NPs per kg soil, respectively, as compared to control. Thus, the use of ZnO-NPs resulted in an increase in soil available Zn but inhibited soil microbial activity.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Animais , Ecossistema , Nanopartículas/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade
15.
Biology (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356521

RESUMO

Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2·2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.

16.
Plants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203887

RESUMO

Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.

17.
J Environ Manage ; 284: 112023, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540196

RESUMO

The remediation of toxic polycyclic aromatic hydrocarbons (PAHs) in the soil is always an important topic since exposure to contaminated soil with carcinogenic, mutagenic, and teratogenic potential can result in serious health effects. With respect to the remediation of PAHs contaminated soil, nanomaterials (NMs) have recently received a great deal of attention due to the special characteristics arising from their nanoscale sizes. However, the usefulness and potency of these NMs depend on their adaption to specific site conditions and soil properties. Since there is no comprehensive review of the applications of NMs, it is of great importance to analyze, discuss, and interpret the latest progress in the application of NMs for the remediation of contaminated soils containing PAHs. This overview essentially captures the novel advances made in nano zero valent-iron (nZVI), metal oxides, carbon-based NMs, and polymer-based materials. Each characteristic of NMs that contributes to the enhancement of the process is highlighted. Moreover, operational conditions in which the best-obtained results are achieved qualitatively summarize. This review is also given special attention to the type of soil and pollutant, which are major influential factors to affect the performance of the process. Furthermore, the potential implication of NMs and PAHs on soil properties is reviewed in terms of the changes in migration behavior of pollutants, plant phytotoxicity, and soil microbial community composition. Discussion on future perspectives is presented on the use and prospects for the application of NMs in contaminated soils.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluição Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
18.
Environ Geochem Health ; 43(6): 2285-2300, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32681212

RESUMO

The combustion of solid fuel at power plants pollutes adjacent areas with potentially toxic elements (PTEs), which increases risks to public health in the vicinity of these facilities. The proposed paper presents the results of a geochemical study of PTEs (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) contamination in the vicinity of Novocherkassk Power Plant (NPP) as it relates to environmental and human health risks. The impact zone of NPP is pronounced for a distance of approximately 7 km northwest of the enterprise-the second largest coal power plant in Southern Russia. Data from monitoring sites lead us to conclude that spatial patterns of soil pollution are strongly influenced by the peculiarities of local atmospheric circulation, while the characteristics of soils within the study area play a secondary role. The highest levels of PTEs and their exchangeable forms exceed both regional background and sanitary and hygienic standards within a radius of 3 km to the west of the plant, which corresponds to a zone of soils contaminated with Cr, Ni, Cu, Zn, Cd, and Pb. The carcinogenic risk to human health slightly exceeds the permissible standard of 1 × 10-6 for soils in close vicinity of the enterprise due to the potential human intake of Ni, Cd, and Pb. The results of the health risk assessment indicate no noncarcinogenic risks for adults, while for children, they are low.


Assuntos
Exposição Ambiental/efeitos adversos , Metais Pesados/análise , Centrais Elétricas , Poluentes do Solo/análise , Adulto , Carcinógenos/análise , Carcinógenos/toxicidade , Criança , Carvão Mineral , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Metais Pesados/toxicidade , Saúde Pública , Medição de Risco , Federação Russa , Poluentes do Solo/toxicidade
19.
Chemosphere ; 240: 124913, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563714

RESUMO

The combined toxicological effects of nickel (Ni) and butyl xanthate (BX), that is commonly used in flotation reagents for non-ferrous metals ore processing such as Ni, copper and lead ores, on soil microbial communities were studied by determining soil microbial activity, soil enzyme activities and Ni bioavailability. The results revealed that the exchangeable (EXC) and reducible (RED) fractions of Ni were higher in Ni/BX mixture than Ni alone, probably because BX reacts with Ni to form complexes that lead an increase in bioavailability of Ni. The presence of BX and Ni inhibited microbial activity and enzyme activities during the first 30-days. Then, from 30 days to 180 days, different trends were observed according to the condition: microbial activity was stimulated with BX alone while it was inhibited with Ni/BX mixture. This observation was supported by the fact that the inhibitory ratio (I) was higher for Ni/BX mixture than BX alone. Results showed that the sensitivity to one or both contaminants followed the order: urease (UA) > invertase (INV). EXC fraction of Ni/BX mixture were significantly correlated with UA, INV, I, peak power (Ppeak) and peak time (Tpeak), respectively (p < 0.01), suggesting that Ni bioavailability might explain the Ni toxicity against microbial communities under combined pollution conditions. Such observations allow us to better understand toxic effects of Ni pollution when accompanied with BX, facilitating precisely evaluation of potential risks in mining areas.


Assuntos
Níquel/farmacocinética , Níquel/toxicidade , Microbiologia do Solo , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Tionas/toxicidade , Disponibilidade Biológica , Calorimetria , Mineração , Solo , Urease/metabolismo , beta-Frutofuranosidase/metabolismo
20.
Environ Geochem Health ; 42(1): 95-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31011941

RESUMO

Soils formed after the desiccation of Lake Atamanskoe, which has served as a reservoir for liquid industrial waste from the city of Kamensk-Shakhtinsky during a long time, were studied. These soils differ from zonal soils by a strong contamination with zinc and sulfur. Preliminary studies showed that Fe compounds fix a significant part of zinc. This requires to study S, Zn, and Fe minerals. In this work, Mössbauer spectroscopy was used for the identification of iron compounds and scanning electron microscopy was used for the microanalysis of these and other minerals. To facilitate the identification of Fe minerals, brown iron ocher was removed from a contaminated soil sample and analyzed. From electron microscopy and Mössbauer spectroscopy data, ocher contained hydrogoethite with a high content of sorption water and schwertmannite (a rare mineral, probably found in Russia for the first time). The chemical composition of this schwertmannite better corresponds to the Cashion-Murad model than to the Bigham model. Particles of partially oxidized magnetite and wustite enriched with zinc were revealed under electron microscope. Siderite with partial substitution of Fe2+ by Zn2+ was detected. Thus, contaminated hydromorphic soil contains both common minerals (illite, goethite, hematite, gypsum) and rare minerals (schwertmannite, Zn siderite, partially oxidized magnetite and wustite enriched with zinc).


Assuntos
Ferro/análise , Minerais/análise , Poluentes do Solo/análise , Enxofre/análise , Zinco/análise , Carbonatos/análise , Compostos Férricos/análise , Compostos Ferrosos/análise , Compostos de Ferro/análise , Minerais/química , Federação Russa , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA