Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
2.
Mov Disord ; 37(8): 1707-1718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699229

RESUMO

BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Síndrome de Cockayne , Neoplasias Cutâneas , Xeroderma Pigmentoso , Adulto , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Reparo do DNA/genética , Humanos , Pele , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
3.
J Neurol ; 262(8): 1927-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041613

RESUMO

Autosomal dominant ataxia type 14 (SCA14) is a rare usually adult-onset progressive disorder with cerebellar neurodegeneration caused by mutations in protein kinase C gamma. We set out to examine cerebellar and extracerebellar neurochemical changes in SCA14 by MR spectroscopy. In 13 SCA14 patients and 13 healthy sex- and age-matched controls, 3-T single-voxel brain proton MR spectroscopy was performed in a cerebellar voxel of interest (VOI) at TE = 30 ms to obtain a neurochemical profile of metabolites with short relaxation times. In the cerebellum and in additional VOIs in the prefrontal cortex, motor cortex, and somatosensory cortex, a second measurement was performed at TE = 144 ms to mainly extract the total N-acetyl-aspartate (tNAA) signal besides the signals for total creatine (tCr) and total choline (tCho). The cerebellar neurochemical profile revealed a decrease in glutathione (6.12E-06 ± 2.50E-06 versus 8.91E-06 ± 3.03E-06; p = 0028) and tNAA (3.78E-05 ± 5.67E-06 versus 4.25E-05 ± 5.15E-06; p = 0023) and a trend for reduced glutamate (2.63E-05 ± 6.48E-06 versus 3.15E-05 ± 7.61E-06; p = 0062) in SCA14 compared to controls. In the tNAA-focused measurement, cerebellar tNAA (296.6 ± 42.6 versus 351.7 ± 16.5; p = 0004) and tCr (272.1 ± 25.2 versus 303.2 ± 31.4; p = 0004) were reduced, while the prefrontal, somatosensory and motor cortex remained unaffected compared to controls. Neuronal pathology in SCA14 detected by MR spectroscopy was restricted to the cerebellum and did not comprise cortical regions. In the cerebellum, we found in addition to signs of neurodegeneration a glutathione reduction, which has been associated with cellular damage by oxidative stress in other neurodegenerative diseases such as Parkinson's disease and Friedreich's ataxia.


Assuntos
Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Glutationa/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ataxias Espinocerebelares/metabolismo , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Creatina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutationa/deficiência , Humanos , Masculino , Pessoa de Meia-Idade
6.
Neurosci Lett ; 430(1): 34-7, 2008 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17997038

RESUMO

The role of the alpha4beta2* nicotinic acetylcholine receptors (nAChR) in tobacco addiction in humans is largely unresolved. We visualized brain alpha4beta2* nicotinic acetylcholine receptors of smokers and non-smokers with positron emission tomography using 2-[(18)F]fluoro-3-(2(S)azetidinylmethoxy)pyridine, commonly known as 2-[(18)F]F-A-85380. The total brain distribution volume of 2-[(18)F]F-A-85380 was significantly increased in smokers. Statistical parametric mapping revealed that the most prominent regional differences of distribution volumes (DV) were found in cerebellum and brainstem with an increased uptake in smokers. The up-regulation of alpha4beta2* nAChR upon chronic nicotine exposure via tobacco smoking incorporates subcortical brain regions which may play an important role in nicotine addiction.


Assuntos
Comportamento Aditivo/fisiopatologia , Encéfalo/metabolismo , Receptores Nicotínicos/metabolismo , Fumar/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA