Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 24(10): 1250-1258.e4, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28919041

RESUMO

To dissect the cellular roles of individual kinases, it is useful to design tools for their selective activation. We describe the engineering of a split-cAbl kinase (sKin-Abl) that is rapidly activated in cells with rapamycin and allows temporal, dose, and compartmentalization control. Our design strategy involves an empirical screen in mammalian cells and identification of split site in the N lobe. This split site leads to complete loss of activity, which can be restored upon small-molecule-induced dimerization in cells. Remarkably, the split site is transportable to the related Src Tyr kinase and the distantly related Ser/Thr kinase, AKT, suggesting broader applications to kinases. To quantify the fold induction of phosphotyrosine (pTyr) modification, we employed quantitative proteomics, NeuCode SILAC. We identified a number of known Abl substrates, including autophosphorylation sites and novel pTyr targets, 432 pTyr sites in total. We believe that this split-kinase technology will be useful for direct activation of protein kinases in cells.


Assuntos
Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-abl/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Fosforilação , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Sirolimo/farmacologia , Quinases da Família src/genética
2.
Elife ; 62017 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-28553927

RESUMO

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Eritropoetina/metabolismo , Fator de Transcrição GATA1/metabolismo , Heme/biossíntese , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA