Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Breast Cancer Res ; 19(1): 130, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212525

RESUMO

BACKGROUND: Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting. METHODS: The Breast Cancer Genome Guided Therapy Study (BEAUTY) is a prospective neoadjuvant chemotherapy (NAC) trial of stage I-III breast cancer patients treated with neoadjuvant weekly taxane+/-trastuzumab followed by anthracycline-based chemotherapy. Using percutaneous tumor biopsies (PTB), we established and characterized PDXs from both primary (untreated) and residual (treated) tumors. Tumor take rate was defined as percent of patients with the development of at least one stably transplantable (passed at least for four generations) xenograft that was pathologically confirmed as breast cancer. RESULTS: Baseline PTB samples from 113 women were implanted with an overall take rate of 27.4% (31/113). By clinical subtype, the take rate was 51.3% (20/39) in triple negative (TN) breast cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. The take rate for those with pCR did not differ from those with residual disease in TN (p = 0.999) and HER2+ (p = 0.2401) tumors. The xenografts from 28 of these 31 patients were such that at least one of the xenografts generated had the same molecular subtype as the patient. Among the 35 patients with residual tumor after NAC adequate for implantation, the take rate was 17.1%. PDX response to paclitaxel mirrored the patients' clinical response in all eight PDX tested. CONCLUSIONS: The generation of PDX models both sensitive and resistant to standard NAC is feasible and these models exhibit similar biological and drug response characteristics as the patients' primary tumors. Taken together, these models may be useful for biomarker discovery and future drug development.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Xenoenxertos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Biópsia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Feminino , Perfilação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Camundongos , Terapia Neoadjuvante , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Rep ; 10(8): 1324-34, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732823

RESUMO

DBC1 (deleted in breast cancer 1), also known as CCAR2 or KIAA1967, is an important negative regulator of SIRT1 and cellular stress response. Although the Dbc1 gene localizes at a region that is homozygously deleted in breast cancer, its role in tumorigenesis remains unclear. It has been suggested to be either a tumor suppressor or an oncogene. Therefore, the function of DBC1 in cancer needs to be further explored. Here, we report that Dbc1 knockout mice are tumor prone, suggesting that DBC1 functions as a tumor suppressor in vivo. Our data suggest that the increased tumor incidence in Dbc1 knockout mice is independent of Sirt1. Instead, we found that DBC1 loss results in less p53 protein in vitro and in vivo. DBC1 directly binds p53 and stabilizes it through competition with MDM2. These studies reveal that DBC1 plays an important role in tumor suppression through p53 regulation.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinogênese , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Intervalo Livre de Doença , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
4.
J Cell Biol ; 185(2): 203-11, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19364925

RESUMO

The protein deacetylase SIRT1 has been implicated in a variety of cellular functions, including development, cellular stress responses, and metabolism. Increasing evidence suggests that similar to its counterpart, Sir2, in yeast, Caenorhabditis elegans, and Drosophila melanogaster, SIRT1 may function to regulate life span in mammals. However, SIRT1's role in cancer is unclear. During our investigation of SIRT1, we found that c-Myc binds to the SIRT1 promoter and induces SIRT1 expression. However, SIRT1 interacts with and deacetylates c-Myc, resulting in decreased c-Myc stability. As a consequence, c-Myc's transformational capability is compromised in the presence of SIRT1. Overall, our experiments identify a c-Myc-SIRT1 feedback loop in the regulation of c-Myc activity and cellular transformation, supporting/suggesting a role of SIRT1 in tumor suppression.


Assuntos
Transformação Celular Neoplásica , Retroalimentação , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sirtuína 1 , Sirtuínas/genética , Telomerase/genética , Telomerase/metabolismo , Transfecção
5.
J Biol Chem ; 283(46): 31785-90, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18801727

RESUMO

Aurora A is a serine/threonine kinase that functions in various stages of mitosis. Accumulating evidence has demonstrated that gene amplification and overexpression of Aurora A are linked to tumorigenesis, suggesting that Aurora A is an oncogene. In addition, Aurora A overexpression has been used as a negative prognostic marker, because it is associated with resistance to anti-mitotic agents commonly used for cancer therapy. To understand the physiological functions of Aurora A, we generated Aurora A knock-out mice. Aurora A null mice die early during embryonic development before the 16-cell stage. These Aurora A null embryos have defects in mitosis, particularly in spindle assembly, supporting critical functions of Aurora A during mitotic transitions. Interestingly, Aurora A heterozygosity results in a significantly increased tumor incidence in mice, suggesting that Aurora A may also act as a haploinsufficient tumor suppressor. Consistently, Aurora A heterozygous mouse embryonic fibroblasts have higher rates of aneuploidy. We further discovered that VX-680, an Aurora kinase inhibitor currently in phase II clinical trials for cancer treatment, could induce aneuploidy in wild type mouse embryonic fibroblasts. We conclude that a balanced Aurora A level is critical for maintaining genomic stability and one needs to be fully aware of the potential side effects of anti-cancer therapy based on the use of Aurora A-specific inhibitors.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Aneuploidia , Animais , Aurora Quinase A , Aurora Quinases , Linhagem Celular , Transformação Celular Neoplásica/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Knockout , Mitose , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Fatores de Tempo
6.
Mol Cell Biol ; 28(22): 6870-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18794363

RESUMO

Polo-like kinases (Plks) are serine/threonine kinases that are highly conserved in organisms from yeasts to humans. Previous reports have shown that Plk1 is critical for all stages of mitosis and may play a role in DNA replication during S phase. While much work has focused on Plk1, little is known about the physiological function of Plk1 in vivo. To address this question, we generated Plk1 knockout mice. Plk1 homozygous null mice were embryonic lethal, and early Plk1(-/-) embryos failed to survive after the eight-cell stage. Immunocytochemistry studies revealed that Plk1-null embryos were arrested outside the mitotic phase, suggesting that Plk1 is important for proper cell cycle progression. It has been postulated that Plk1 is a potential oncogene, due to its overexpression in a variety of tumors and tumor cell lines. While the Plk1 heterozygotes were healthy at birth, the incidence of tumors in these animals was threefold greater than that in their wild-type counterparts, demonstrating that the loss of one Plk1 allele accelerates tumor formation. Collectively, our data support that Plk1 is important for early embryonic development and may function as a haploinsufficient tumor suppressor.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Embrião de Mamíferos/fisiologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Embrião de Mamíferos/citologia , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Quinase 1 Polo-Like
7.
J Cell Biol ; 181(5): 727-35, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-18504301

RESUMO

The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.


Assuntos
Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Masculino , Metáfase , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
8.
DNA Repair (Amst) ; 6(9): 1243-54, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17376750

RESUMO

In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fosfoproteínas/metabolismo , Espermatócitos/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Relação Dose-Resposta à Radiação , Imunofluorescência , Células Germinativas/metabolismo , Células Germinativas/efeitos da radiação , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Rad51 Recombinase/metabolismo , Espermatogônias/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Raios X
9.
Mol Carcinog ; 45(6): 403-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16691596

RESUMO

Cells activate complex signaling networks in response to DNA damage. Several proteins and protein complexes are involved in sensing DNA lesions and initiating the DNA damage response networks. The subsequent DNA damage responses, including the initiation of DNA repair pathways, the activation of cell cycle checkpoint controls and the induction of apoptosis, help maintain genomic stability in mammalian systems. Failure to establish the appropriate DNA damage signaling networks results in genomic instability, which is a known causal factor in tumorigenesis. This review will discuss recent progress in the understanding of the mechanisms by which mammalian cells sense DNA lesions and transduce DNA damage signals during early DNA damage responses.


Assuntos
Dano ao DNA , Proteínas Nucleares/fisiologia , Transdução de Sinais/fisiologia , Transativadores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/fisiologia , Humanos
10.
Mol Cell ; 21(2): 187-200, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16427009

RESUMO

MDC1 functions in checkpoint activation and DNA repair following DNA damage. To address the physiological role of MDC1, we disrupted the MDC1 gene in mice. MDC1-/- mice recapitulated many phenotypes of H2AX-/- mice, including growth retardation, male infertility, immune defects, chromosome instability, DNA repair defects, and radiation sensitivity. At the molecular level, H2AX, MDC1, and ATM form a positive feedback loop, with MDC1 directly mediating the interaction between H2AX and ATM. MDC1 binds phosphorylated H2AX through its BRCT domain and ATM through its FHA domain. Through these interactions, MDC1 accumulates activated ATM flanking the sites of DNA damage, facilitating further ATM-dependent phosphorylation of H2AX and the amplification of DNA damage signals. In the absence of MDC1, many downstream ATM signaling events are defective. These results suggest that MDC1, as a signal amplifier of the ATM pathway, is vital in controlling proper DNA damage response and maintaining genomic stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Feminino , Instabilidade Genômica , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Transdução de Sinais , Transativadores
11.
Nat Struct Mol Biol ; 12(7): 589-93, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965487

RESUMO

The tumor suppressor BRCA1 has an important function in the maintenance of genomic stability. Increasing evidence suggests that BRCA1 regulates cell cycle checkpoints and DNA repair after DNA damage. However, little is known about its normal function in the absence of DNA damage. Here we show that BRCA1 interacts and colocalizes with topoisomerase IIalpha in S phase cells. Similar to cells treated with the topoisomerase IIalpha inhibitor ICRF-193, BRCA1-deficient cells show lagging chromosomes, indicating a defect in DNA decatenation and chromosome segregation. More directly, BRCA1 deficiency results in defective DNA decatenation in vitro. Finally, topoisomerase IIalpha is ubiquitinated in a BRCA1-dependent manner, and topoisomerase IIalpha ubiquitination correlates with higher DNA decatenation activity. Together these results suggest an important role of BRCA1 in DNA decatenation and reveal a previously unknown function of BRCA1 in the maintenance of genomic stability.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteína BRCA1/metabolismo , Segregação de Cromossomos/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Instabilidade Genômica/fisiologia , Fase S/fisiologia , Células Cultivadas , Análise Citogenética , Imunofluorescência , Immunoblotting , Imunoprecipitação , RNA Interferente Pequeno/metabolismo , Transfecção , Ubiquitina/metabolismo
12.
Nat Genet ; 37(4): 401-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15793587

RESUMO

Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Quinases/metabolismo , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Aurora Quinase A , Aurora Quinases , Carcinógenos/toxicidade , Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Feminino , Fibroblastos/enzimologia , Marcação de Genes , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Xenopus
13.
J Biol Chem ; 278(16): 13599-602, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12611903

RESUMO

BRCA1 is a tumor suppressor involved in DNA repair and damage-induced checkpoint controls. In response to DNA damage, BRCA1 relocalizes to nuclear foci at the sites of DNA lesions. However, little is known about the regulation of BRCA1 relocalization following DNA damage. Here we show that mediator of DNA damage checkpoint protein 1 (MDC1), previously named NFBD1 or Kiaa0170, is a proximate mediator of DNA damage responses that regulates BRCA1 function. MDC1 regulates ataxia-telangiectasia-mutated (ATM)-dependent phosphorylation events at the site of DNA damage. Importantly down-regulation of MDC1 abolishes the relocalization and hyperphosphorylation of BRCA1 following DNA damage, which coincides with defective G(2)/M checkpoint control in response to DNA damage. Taken together these data suggest that MDC1 regulates BRCA1 function in DNA damage checkpoint control.


Assuntos
Proteína BRCA1/biossíntese , Proteína BRCA1/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Regulação para Baixo , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Células K562 , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Fase S , Fatores de Tempo , Transativadores/metabolismo , Transfecção , Proteínas Supressoras de Tumor
14.
Nature ; 421(6926): 957-61, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12607004

RESUMO

Forkhead-homology-associated (FHA) domains function as protein-protein modules that recognize phosphorylated serine/threonine motifs. Interactions between FHA domains and phosphorylated proteins are thought to have essential roles in the transduction of DNA damage signals; however, it is unclear how FHA-domain-containing proteins participate in mammalian DNA damage responses. Here we report that a FHA-domain-containing protein-mediator of DNA damage checkpoint protein 1 (MDC1; previously known as KIAA0170)--is involved in DNA damage responses. MDC1 localizes to sites of DNA breaks and associates with CHK2 after DNA damage. This association is mediated by the MDC1 FHA domain and the phosphorylated Thr 68 of CHK2. Furthermore, MDC1 is phosphorylated in an ATM/CHK2-dependent manner after DNA damage, suggesting that MDC1 may function in the ATM-CHK2 pathway. Consistent with this hypothesis, suppression of MDC1 expression results in defective S-phase checkpoint and reduced apoptosis in response to DNA damage, which can be restored by the expression of wild-type MDC1 but not MDC1 with a deleted FHA domain. Suppression of MDC1 expression results in decreased p53 stabilization in response to DNA damage. These results suggest that MDC1 is recruited through its FHA domain to the activated CHK2, and has a critical role in CHK2-mediated DNA damage responses.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Quinase do Ponto de Checagem 2 , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática/efeitos da radiação , Raios gama , Humanos , Camundongos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Transporte Proteico/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transativadores/química , Transativadores/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA