Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15075, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699974

RESUMO

Human Papillomavirus (HPV) is the most common cause of sexually transmitted diseases and causes a wide range of pathologies including cervical carcinoma. Integration of the HR-HPV DNA into the host genome plays a crucial role in cervical carcinoma. An alteration of the pRb pathways by the E7 proteins is one of the mechanisms that's account for the transforming capacity of high-risk papillomavirus. For the proper understanding of the underline mechanism of the progression of the disease, the present study investigate the correlation of concentration of host pRb protein, viral E7 oncoprotein and viral load in early and advanced stages of cervical carcinoma. It was found that the viral load in early stages (stage I and II) was less (log10 transformed mean value 2.6 and 3.0) compared to advanced stages (stage III and IV) (Log10 transformed value 5.0 and 5.8) having high expression of HPV E7 onco-protein and reduced level of pRb protein, signifying the role of viral load and expression level of E7 oncoprotein in the progression of cervical cancer.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Carga Viral , Proteínas E7 de Papillomavirus/genética
2.
Curr Top Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711006

RESUMO

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

3.
Clin Physiol Funct Imaging ; 43(4): 271-277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36943006

RESUMO

AIM: Tenascin C (TNC) is a large extracellular matrix glycoprotein. It is involved in development and upregulated both during tissue repair and in several pathological conditions, including cardiovascular disease. Extracellular matrix proteins play a role in promoting exercise responses, leading to adaptation, regeneration, and repair. The main goal of this study was to investigate whether a short anaerobic effort leads to increased levels of TNC in serum. METHODS: Thirty-nine healthy men performed a Wingate test followed by a muscle biopsy. Myoblasts were isolated from the muscle biopsies and differentiated to myotubes ex vivo. TNC RNA was quantified in the biopsies, myotubes and myoblasts using RNA sequencing. Blood samples were drawn before and 5 min after the Wingate test. Serum TNC levels were measured using enzyme-linked immunosorbent assay. RESULTS: After the Wingate test, serum TNC increased on average by 23% [15-33], median [interquartile range]; PWilcoxon < 0.0001. This increase is correlated with peak power output and power drop, but not with VO2max . TNC RNA expression is higher in myoblasts and myotubes compared to skeletal muscle tissue. CONCLUSION: TNC is secreted systemically as a response to the Wingate anaerobic test in healthy males. The response was positively correlated with peak power and power drop, but not with VO2max which implicates a relation to mechanical strain and/or blood flow. With higher expression in undifferentiated myoblast cells than muscle tissue, it is likely that TNC plays a role in muscle tissue remodelling in humans. Our findings open for research on how TNC contributes to exercise adaptation.


Assuntos
Proteínas da Matriz Extracelular , Tenascina , Masculino , Humanos , Tenascina/genética , Tenascina/metabolismo , Anaerobiose , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , RNA/metabolismo
4.
Funct Integr Genomics ; 23(1): 35, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629976

RESUMO

Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals.


Assuntos
Alcaloides , Antineoplásicos , Arabidopsis , Animais , Arabidopsis/genética , Antineoplásicos/farmacologia , Cromonas/farmacologia , Cromonas/uso terapêutico , Alcaloides/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas , Mamíferos
6.
Biomed Res Int ; 2022: 2756242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669726

RESUMO

Celiac disease (CeD) is a chronic, immune-mediated enteropathy that is precipitated by dietary gluten in genetically predisposed individuals expressing HLA-DQ2 and/or HLA-DQ8. In the current clinical practice, there are many serologic studies to aid in the diagnosis of CeD which include autoantibodies like IgA antitissue transglutaminase, antiendomysium, and antideamidated forms of gliadin peptide antibodies. Small intestinal biopsy has long been considered an essential step for the diagnosis of CeD. However, in the recent era, researchers have explored the possibility of CeD screening and diagnosis without endoscopy or biopsy. The newer emerging biomarkers of CeD appear promising in diagnostic evaluation and subsequent monitoring of disease. In this review of literature, we have explored the emerging biomarker-based diagnostic evaluation and monitoring of CeD.


Assuntos
Doença Celíaca , Autoanticorpos , Biomarcadores , Doença Celíaca/diagnóstico , Doença Celíaca/terapia , Glutens , Humanos , Testes Sorológicos , Transglutaminases
7.
Mini Rev Med Chem ; 21(17): 2530-2543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596800

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering have led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials, researchers worldwide are currently using available conventional therapeutic drugs with the potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to showed promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID- 19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/efeitos adversos , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/efeitos adversos , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Eur J Med Chem ; 101: 769-79, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26222449

RESUMO

A series of Michael-type analogues were generated on the C-ring of α-santonin (α-methylene-γ-butyrolactone) upon reaction with various thiols. All the thiol adducts synthesized were evaluated for their anticancer activity against four human cancer cell lines (PC-3, HCT-15, A-549 and MCF-7). Bioassay results indicated that even though most of the synthesized compounds exhibited a good anticancer activity against various cancer cells in vitro, some of the compounds like 9e, 9g and 9q were found to be the most promising analogues in this series, with compound 9e showing IC50 values of 1.5 µM, 0.6 µM, 2.4 µM and 1.2 µM on PC-3, MCF-7, A-549 and HCT-116 cell lines respectively. Further, flow cytometry studies showed that MCF-7 cells treated with the compounds 9e, 9g and 9q were arrested in the sub G1 phase of the cell cycle in a concentration dependent manner. These lead molecules were further studied for NF-κB, p65 transcription factor inhibitory activity which confirmed concentration dependent inhibition against NF-κB, p65 with analogue 9e showing 57% inhibition at 2 µM, 9g showing 62% inhibition at 3 µM and 9q showing 54% inhibition at 2 µM concentration.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Santonina/análogos & derivados , Compostos de Sulfidrila/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Santonina/síntese química , Santonina/química , Santonina/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfidrila/farmacologia
9.
Nat Prod Commun ; 9(11): 1655-69, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25532303

RESUMO

This review attempts to portray the discovery and development of anticancer agents/drugs from diverse natural sources. Natural molecules from these natural sources including plants, microbes and marine organisms have been the basis of treatment of human diseases since the ancient times. Compounds derived from nature have been important sources of new drugs and also serve as templates for synthetic modification. Many successful anti-cancer drugs currently in use are naturally derived or their analogues and many more are under clinical trials. This review aims to highlight the invaluable role that natural products have played, and continue to play, in the discovery of anticancer agents.


Assuntos
Antineoplásicos , Produtos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA