Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(17): 7929-7944, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37067009

RESUMO

A hydroxycinnamic acid derivative, namely ferulic acid (FA) has been successfully encapsulated in polymeric nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA). FA-loaded polymeric NPs were prepared from O/W nano-emulsion templates using the phase inversion composition (PIC) low-energy emulsification method. The obtained PLGA NPs exhibited high colloidal stability, good drug-loading capacity, and particle hydrodynamic diameters in the range of 74 to 117 nm, depending on the FA concentration used. In vitro drug release studies confirmed a diffusion-controlled mechanism through which the amount of released FA reached a plateau at 60% after 6 hours-incubation. Five kinetic models were used to fit the FA release data as a function of time. The Weibull distribution and Korsmeyer-Peppas equation models provided the best fit to our experimental data and suggested quasi-Fickian diffusion behaviour. Moderate dose-response antioxidant and radical scavenging activities of FA-loaded PLGA NPs were demonstrated using the DPPH˙ assay achieving inhibition activities close to 60 and 40%, respectively. Cell culture studies confirmed that FA-loaded NPs were not toxic according to the MTT colorimetric assay, were able to internalise efficiently SH-SY5Y neuronal cells and supressed the intracellular ROS-level induced by H2O2 leading to 52% and 24.7% of cellular viability at 0.082 and 0.041 mg mL-1, respectively. The permeability of the NPs through the blood brain barrier was tested with an in vitro organ-on-a-chip model to evaluate the ability of the FA-loaded PLGA and non-loaded PLGA NPs to penetrate to the brain. NPs were able to penetrate the barrier, but permeability decreased when FA was loaded. These results are promising for the use of loaded PLGA NPs for the management of neurological diseases.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácidos Cumáricos/farmacologia , Ácido Poliglicólico , Ácido Láctico , Barreira Hematoencefálica , Peróxido de Hidrogênio , Tamanho da Partícula , Portadores de Fármacos/farmacologia
2.
Talanta ; 226: 122045, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676640

RESUMO

Hypoxia is a common medical problem, sometimes difficult to detect and caused by different situations. Control of hypoxia is of great medical importance and early detection is essential to prevent life threatening complications. However, the few current methods are invasive, expensive, and risky. Thus, the development of reliable and accurate sensors for the continuous monitoring of hypoxia is of vital importance for clinical monitoring. Herein, we report an implantable sensor to address these needs. The developed device is a low-cost, miniaturised implantable electrochemical sensor for monitoring hypoxia in tissue by means of pH detection. This technology is based on protonation/deprotonation of polypyrrole conductive polymer. The sensor was optimized in vitro and tested in vivo intramuscularly and ex vivo in blood in adult rabbits with respiration-induced hypoxia and correlated with the standard device ePOCTM. The sensor demonstrated excellent sensitivity and reproducibility; 46.4 ± 0.4 mV/pH in the pH range of 4-9 and the selectivity coefficient exhibited low interference activity in vitro. The device was linear (R2 = 0.925) with a low dispersion of the values (n = 11) with a cut-off of 7.1 for hypoxia in vivo and ex vivo. Statistics with one-way ANOVA (α = 0.05), shows statistical differences between hypoxia and normoxia states and the good performance of the pH sensor, which demonstrated good agreement with the standard device. The sensor was stable and functional after 18 months. The excellent results demonstrated the feasibility of the sensors in real-time monitoring of intramuscular tissue and blood for medical applications.


Assuntos
Acidose , Polímeros , Animais , Hipóxia/diagnóstico , Pirróis , Coelhos , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121271

RESUMO

Cancer represents one of the conditions with the most causes of death worldwide. Common methods for its diagnosis are based on tissue biopsies-the extraction of tissue from the primary tumor, which is used for its histological analysis. However, this technique represents a risk for the patient, along with being expensive and time-consuming and so it cannot be frequently used to follow the progress of the disease. Liquid biopsy is a new cancer diagnostic alternative, which allows the analysis of the molecular information of the solid tumors via a body fluid draw. This fluid-based diagnostic method displays relevant advantages, including its minimal invasiveness, lower risk, use as often as required, it can be analyzed with the use of microfluidic-based platforms with low consumption of reagent, and it does not require specialized personnel and expensive equipment for the diagnosis. In recent years, the integration of sensors in microfluidics lab-on-a-chip devices was performed for liquid biopsies applications, granting significant advantages in the separation and detection of circulating tumor nucleic acids (ctNAs), circulating tumor cells (CTCs) and exosomes. The improvements in isolation and detection technologies offer increasingly sensitive and selective equipment's, and the integration in microfluidic devices provides a better characterization and analysis of these biomarkers. These fully integrated systems will facilitate the generation of fully automatized platforms at low-cost for compact cancer diagnosis systems at an early stage and for the prediction and prognosis of cancer treatment through the biomarkers for personalized tumor analysis.


Assuntos
Detecção Precoce de Câncer/métodos , Biópsia Líquida/métodos , Microfluídica/métodos , Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , Exossomos/patologia , Humanos , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologia
4.
Int J Mol Sci ; 19(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248975

RESUMO

Cancer is one of the greatest threats facing our society, being the second leading cause of death globally. Currents strategies for cancer diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a solid biopsy is expensive and time consuming and cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method; it has no risk, it is non-invasive and painless, it does not require surgery and reduces cost and diagnosis time. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Improvements in isolation technologies, based on a higher grade of purification of CTCs, exosomes, and ctDNA, will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of diseases, and the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Biópsia/métodos , Biópsia Líquida/métodos , Humanos , Células Neoplásicas Circulantes/metabolismo
5.
Biosens Bioelectron ; 61: 124-30, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24874655

RESUMO

An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.


Assuntos
Técnicas Biossensoriais/instrumentação , Mucosa Gástrica/patologia , Isquemia/diagnóstico , Potássio/análise , Potenciometria/instrumentação , Estômago/irrigação sanguínea , Animais , Eletrodos , Endoscopia/instrumentação , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Estômago/patologia , Suínos
6.
Biosens Bioelectron ; 25(9): 2115-21, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20356728

RESUMO

Microfabrication permits the incorporation of dense electrode arrays in microsystems and small volume diagnostic devices. However, the specific functionalization of arbitrary shape electrodes with different biomolecules remains a challenging issue. In the present work, the problem of fabricating closely spaced microelectrodes (20 microm sensor diameter and 20 microm-spaced interdigitated electrodes array) that can be modified selectively in order to create multi-analyte sensor arrays is addressed by employing a biomolecule friendly photolithographic procedure for the sequential immobilization of different biomolecules onto separated electrodes of the same array. The concept was demonstrated with selective detection of oligonucleotides for breast cancer gene mutation detection, the hormone T4 detected with specific antibodies and sarcosine and glucose detected with specific enzymes immobilized in two-analyte arrays in order to assure that the method is compatible with all the types of biorecognition molecules used in biosensors. Electrochemical techniques were used in this array, because of the low cost, high sensitivity and easy miniaturization of these transducers. Although the array was composed of only two sets of electrodes, the results demonstrate that the method proposed is generic and could be used for patterning of electrochemical multi-analyte biosensors at even higher resolution.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise em Microsséries/instrumentação , DNA/análise , DNA/genética , Técnicas Eletroquímicas , Enzimas Imobilizadas , Genes BRCA1 , Humanos , Imunoensaio/instrumentação , Microeletrodos , Microtecnologia , Mutação , Fotografação , Tiroxina/análise
7.
Talanta ; 75(2): 432-41, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371903

RESUMO

One of the most time consuming and complex steps in the detection of DNA target with a biosensor is the previous labeling of the target. In this paper, a novel target label-free, reagentless and easy to use DNA biosensor is reported. Electrochemical transduction (cyclic voltammetry, differential pulse voltammetry and impedance spectroscopy) and optical red out by surface plasmon resonance were chosen for the platform optimization. This target label-free DNA detection method is based on displacement of sub-optimum labeled oligonucleotide. This strategy requires the pre-hybridization of the capture probe immobilized on the electrode surface with a sub-optimum mutated oligonucleotide pre-labeled with an electrochemically active ferrocene moiety. Due to the higher affinity of the target that is fully complementary to the capture probe, the sub-optimum ferrocene-labeled sequence is displaced when the fully complementary target is introduced into the system. The decrease of the electrochemical signal from the ferrocene verifies the presence of the target, which is proportional to the target concentration. A variation of this strategy was employed to enhance the ferrocene signal. A diffusional mediator, ferrocyanide, was introduced in the system to help in this purpose. This platform attains a stable, specific and reproducible response (5-15%), with a detection limit in the range of microM. This electrochemical sensor is the first example of this kind of sensor to detect cystic fibrosis, however, this configuration could be generically applied to any application where the detection of a DNA target is involved.


Assuntos
Técnicas Biossensoriais , DNA/análise , Eletroquímica/métodos , Sequência de Bases , Primers do DNA , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA