Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1120898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650000

RESUMO

Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.

2.
Microbiol Res ; 212-213: 29-37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853166

RESUMO

Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.


Assuntos
Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Anti-Infecciosos/metabolismo , Antifúngicos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Oxilipinas/metabolismo , Peptídeos/genética , Desenvolvimento Vegetal , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/imunologia , Ácido Salicílico/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA