Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Reprod Toxicol ; 129: 108670, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39032759

RESUMO

Tributyltin (TBT) and mercury (Hg) are endocrine-disrupting chemicals that individually cause reproductive complications. However, the reproductive consequences of exposure to a mixture of TBT plus Hg are not well known. We hypothesized that exposure to a mixture of TBT plus Hg would alter hypothalamic-pituitary-gonadal (HPG) axis function. Female rats were exposed to this mixture daily for 15 days, after which chemical accumulation in the tissues, morphology, hormone levels, inflammation, fibrosis, and protein expression in the reproductive organs were assessed. Increases in tin (Sn) and Hg levels were detected in the serum, HPG axis, and uterus of TBT-Hg rats. TBT-Hg rats exhibited irregular estrous cycles. TBT-Hg rats showed an increase in gonadotropin-releasing hormone (GnRH) protein expression and follicle-stimulating hormone (FSH) levels and a reduction in luteinizing hormone (LH) levels. Reduced ovarian reserve, antral follicles, corpora lutea (CL) number, and estrogen levels and increased atretic and cystic follicles were found, suggesting that TBT-Hg exposure exacerbated premature ovarian insufficiency (POI) features. Furthermore, TBT-Hg rats exhibited increased ovarian mast cell numbers, expression of the inflammatory markers IL-6 and collagen deposition. Apoptosis and reduced gland number were observed in the uteri of TBT-Hg rats. A reduction in the number of pups/litter for 90 days was found in TBT-Hg rats, suggesting impaired fertility. Strong negative correlations were found between serum and ovarian Sn levels and ovarian Hg levels and ovarian reserve and CL number. Collectively, these data suggest that TBT plus Hg exposure leads to abnormalities in the HPG axis, exacerbating POI features and reducing fertility in female rats.


Assuntos
Disruptores Endócrinos , Fertilidade , Ovário , Insuficiência Ovariana Primária , Compostos de Trialquitina , Útero , Animais , Feminino , Compostos de Trialquitina/toxicidade , Insuficiência Ovariana Primária/induzido quimicamente , Fertilidade/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Disruptores Endócrinos/toxicidade , Útero/efeitos dos fármacos , Útero/metabolismo , Mercúrio/toxicidade , Ratos Sprague-Dawley , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Ciclo Estral/efeitos dos fármacos , Ratos
2.
Reprod Toxicol ; 128: 108635, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38936095

RESUMO

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.


Assuntos
Aromatase , Disruptores Endócrinos , Glândulas Mamárias Animais , Ratos Sprague-Dawley , Compostos de Trialquitina , Animais , Feminino , Compostos de Trialquitina/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Disruptores Endócrinos/toxicidade , Aromatase/metabolismo , Aromatase/genética , Receptor alfa de Estrogênio/metabolismo , Ratos
3.
Environ Toxicol ; 39(9): 4278-4297, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38712533

RESUMO

Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRß) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.


Assuntos
Cádmio , Diabetes Mellitus Tipo 2 , Fígado , Animais , Feminino , Diabetes Mellitus Tipo 2/induzido quimicamente , Ratos , Cádmio/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Diabetes Mellitus Tipo 1/induzido quimicamente , Ratos Wistar , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Disruptores Endócrinos/toxicidade
4.
Mol Cell Endocrinol ; 586: 112203, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490633

RESUMO

Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 µg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.


Assuntos
Eixo Hipotalâmico-Hipofisário-Gonadal , Microcistinas , Ratos , Feminino , Animais , Microcistinas/toxicidade , Interleucina-6/metabolismo , Ovário/metabolismo , Estrogênios , Hormônio Liberador de Gonadotropina/metabolismo
5.
Cancers (Basel) ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37296979

RESUMO

Atrx loss was recently ascertained as insufficient to drive pancreatic neuroendocrine tumour (PanNET) formation in mice islets. We have identified a preponderant role of Atrx in the endocrine dysfunction in a Rip-Cre;AtrxKO genetically engineered mouse model (GEMM). To validate the impact of a different Cre-driver line, we used similar methodologies and characterised the Pdx1-Cre;AtrxKO (P.AtrxKO) GEMM to search for PanNET formation and endocrine fitness disruption for a period of up to 24 months. Male and female mice presented different phenotypes. Compared to P.AtrxWT, P.AtrxHOM males were heavier during the entire study period, hyperglycaemic between 3 and 12 mo., and glucose intolerant only from 6 mo.; in contrast, P.AtrxHOM females started exhibiting increased weight gains later (after 6 mo.), but diabetes or glucose intolerance was detected by 3 mo. Overall, all studied mice were overweight or obese from early ages, which challenged the histopathological evaluation of the pancreas and liver, especially after 12 mo. Noteworthily, losing Atrx predisposed mice to an increase in intrapancreatic fatty infiltration (FI), peripancreatic fat deposition, and macrovesicular steatosis. As expected, no animal developed PanNETs. An obese diabetic GEMM of disrupted Atrx is presented as potentially useful for metabolic studies and as a putative candidate for inserting additional tumourigenic genetic events.

6.
Reprod Toxicol ; 119: 108410, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211340

RESUMO

We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHß+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHß+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.


Assuntos
Hipotálamo , Obesidade , Ratos , Feminino , Animais , Hipotálamo/metabolismo , Obesidade/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta , Carboidratos , Kisspeptinas/genética , Kisspeptinas/metabolismo
7.
J Periodontal Res ; 58(2): 283-295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36575324

RESUMO

BACKGROUND AND OBJECTIVES: Periodontitis is a highly prevalent disease in psychiatric patients, including those undergoing symptomatic treatment with second-generation antipsychotics. Some of these drugs, such as clozapine (CLO) and olanzapine (OLA), have prominent metabolic effects such as weight gain, hyperglycemia, and dyslipidemia, which are risk factors for periodontitis. In addition to the metabolic effects, there are reports of changes in salivary flow, gingival bleeding, and caries. In this context, we aimed to evaluate if the metabolic effects of OLA and CLO alter periodontal parameters in an animal model of periodontitis without the environmental and psychosocial biases inherent to human diseases. METHODS: In the first set of experiments, male and female adult Wistar rats received oral administration of CLO, OLA, or vehicle for 45 days. They were evaluated for body mass composition and weight gain, blood glucose parameters (fasting and glucose tolerance and insulin resistance tests), and lipid profile (HDL, total cholesterol, and triglycerides). In a second set of experiments, the same measurements were performed in female rats exposed to the antipsychotics for 45 days and ligature-induced periodontitis on the 30th day of treatment. Macroscopic measurements of exposed roots, microtomography in the furcation region of the first molar, and histological evaluation of the region between the first and second molars were evaluated to assess bone loss. Additionally, gingival measurements of myeloperoxidase activity and pro-inflammatory cytokine TNF-α were made. RESULTS: Only females exposed to OLA had more significant weight gain than controls. They also exhibited differences in glucose metabolism. Ligature-induced periodontitis produced intense bone retraction without changing the density of the remaining structures. The bone loss was even higher in rats with periodontitis treated with OLA or CLO and was accompanied by a local increase in TNF-α caused by CLO. These animals, however, did not exhibit the same metabolic impairments observed for animals without periodontitis. CONCLUSION: The use of clozapine and olanzapine may be a risk factor for periodontal disease, independent of systemic metabolic alterations.


Assuntos
Antipsicóticos , Doenças Ósseas Metabólicas , Clozapina , Periodontite , Humanos , Adulto , Ratos , Masculino , Feminino , Animais , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Olanzapina/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Periodontite/complicações , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Aumento de Peso
8.
Environ Res ; 218: 114869, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460069

RESUMO

INTRODUCTION: Endocrine disrupting chemicals (EDCs) are exogenous substances recognised as relevant tumourigenic chemicals. Studies show that even EDCs which were long abolished are still contributing to the increasing incidence of neoplasia. AIM: To investigate the association between human exposure to EDCs and the risk of endocrine-related tumours: breast, prostate, thyroid, uterus, testis, and ovary. METHODS: A systematic review using PubMed, Scopus, and Embase was conducted, searching for original observational studies published between 1980 and 2020, approaching EDCs exposure and endocrine tumourigenic risk in humans. We comprised neoplasia of six endocrine organs. We included all the studies on EDCs reporting tumour odds ratio, risk ratio, or hazard ratio. Study levels of confidence and risk of bias were accessed applying accredited guidelines. Human-made accidents and natural EDCs were not considered in the present study. RESULTS: Our search returned 3271 papers. After duplicate removal and screening, only 237 papers were included (corresponding to 268 records). EDCs were grouped from the most frequently (pesticides) to the least frequently studied (salts). The most tumourigenic EDC groups were phthalates (63%), heavy metals (54%), particulate matter (47%), and pesticides (46%). Pesticides group comprised the highest number of retrieved studies (n = 133). Increased neoplasia risk was found in 43-67% of the studies, with a lower value for ovary (43%) and a higher value for thyroid (67%). CONCLUSIONS: The innovative nature of our review comes from including human studies of six endocrine-related neoplasia aiming to understand the contribution of specific EDCs groups to each organ's tumourigenesis. Thyroid was the organ presenting the highest cancer risk after EDC exposure which may explain the increasing thyroid cancer incidence. However, detailed and controlled works reporting the effects of EDCs are scarce, probably justifying conflicting results. Multinational and multicentric human studies with biochemical analysis are needed to achieve stronger and concordant evidence.


Assuntos
Disruptores Endócrinos , Metais Pesados , Praguicidas , Masculino , Feminino , Humanos , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Sistema Endócrino , Praguicidas/toxicidade , Testículo/química
9.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551653

RESUMO

Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive, carcinoma derived from follicular cells. While conventional treatments may improve patients' survival, the lethality remains high. Therefore, there is an urgent need for more effective ATC treatments. Cardiotonic steroids, such as ouabain, have been shown to have therapeutic potential in cancer treatment. Thus, we aimed to evaluate ouabain's effects in human anaplastic thyroid cells. For this, 8505C cells were cultured in the presence or absence of ouabain. Viability, cell death, cell cycle, colony formation and migratory ability were evaluated in ouabain-treated and control 8505C cells. The expression of differentiation and epithelial-to-mesenchymal transition (EMT) markers, as well as IL-6, TGFb1 and their respective receptors were also quantified in these same cells. Our results showed that ouabain in vitro decreased the number of viable 8505C cells, possibly due to an inhibition of proliferation. A reduction in migration was also observed in ouabain-treated 8505C cells. In contrast, decreased mRNA levels of PAX8 and TTF1 differentiation markers and increased levels of the N-cadherin EMT marker, as well as IL-6 and TGFb1, were found in ouabain-treated 8505C cells. In short, ouabain may have anti-proliferative and anti-migratory effect on 8505C cells, but maintains an aggressive and undifferentiated profile.

10.
Mol Cell Endocrinol ; 558: 111774, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096379

RESUMO

A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.


Assuntos
Dieta , Insulinas , Ratos , Feminino , Animais , Inflamação , Fibrose , Glicogênio , Glucose , Dieta Hiperlipídica
11.
Cancers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010860

RESUMO

ATRX is a chromatin remodeller that maintains telomere homeostasis. Loss of ATRX is described in approximately 10% of pancreatic neuroendocrine tumours (PanNETs) and associated with poorer prognostic features. Here, we present a genetically engineered mouse model (GEMM) addressing the role of Atrx loss (AtrxKO) in pancreatic ß cells, evaluating a large cohort of ageing mice (for up to 24 months (mo.)). Atrx loss did not cause PanNET formation but rather resulted in worsening of ageing-related pancreatic inflammation and endocrine dysfunction in the first year of life. Histopathological evaluation highlighted an exacerbated prevalence and intensity of pancreatic inflammation, ageing features, and hepatic steatosis in AtrxKO mice. Homozygous floxed mice presented hyperglycaemia, increased weights, and glucose intolerance after 6 months, but alterations in insulinaemia were not detected. Floxed individuals presented an improper growth of their pancreatic endocrine fraction that may explain such an endocrine imbalance. A pilot study of BRACO-19 administration to AtrxKO mice resulted in telomere instability, reinforcing the involvement of Atrx in the maintenance of ß cell telomere homeostasis. Thereby, a non-obese dysglycaemic GEMM of disrupted Atrx is here presented as potentially useful for metabolic studies and putative candidate for inserting additional tumourigenic genetic events.

12.
Mol Cell Endocrinol ; 553: 111689, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690288

RESUMO

Tributyltin (TBT) is an endocrine disruptor used as a biocide in nautical paints. Even though many TBT effects in marine species are known, data in mammals are scarce, especially regarding the thyroid gland. The present study aimed to evaluate the effect of a subchronic exposure to TBT on thyroid oxidative stress of female Wistar rats. Rats received vehicle (control group), 200 or 1000 ng TBT/kg body weight/day for 40 days. After euthanasia, one part of the thyroids were collected in order to assess iodide uptake; activity and/or mRNA expression of thyroperoxidase (TPO) and dual oxidases (DUOXs); activity and/or mRNA expression of catalase, glutathione peroxidase, superoxide dismutase and NADPH oxidase 4 (CAT, GPx, SOD and NOX4); 4-hydroxynonenal (4-HNE) expression and total thiol groups levels; and mRNA expression of estrogen receptors alpha and beta (ERα and ERß). The remaining part of the thyroid was processed for morphological analysis of estrogen receptor alpha (ERα) and for collagen deposition. Iodide uptake was not changed with treatments. TPO activity and expression were increased in the TBT1000 group (259.81% and 95.17%). The activity, but not mRNA, of CAT (17.36% TBT200; 27.10% TBT1000) and GPx (29.24% TBT200; 28.97% TBT1000) were decreased by TBT. SOD and NADPH oxidase activity, as well as thiol group and 4-HNE levels remained unchanged. Interstitial collagen deposition increased in the TBT200 group (39.54%). The mRNA expression of ERα increased in TBT-treated rats (44.87% TBT200; 36.43% TBT1000), while protein expression was increased but not reaching significance (TBT1000, p = 0.056) by TBT. Therefore, our results show that TBT increases TPO expression and reduces antioxidant enzyme activities in the thyroid gland leading to oxidative stress. Some of these effects could be mediated by the ERα pathway.


Assuntos
Disruptores Endócrinos , Compostos de Trialquitina , Animais , Colágeno/metabolismo , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Feminino , Iodetos/metabolismo , Mamíferos/metabolismo , Oxirredução , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Glândula Tireoide/metabolismo , Compostos de Trialquitina/toxicidade
13.
Brain Tumor Pathol ; 39(4): 183-199, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35725837

RESUMO

Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Fatores de Transcrição , Organização Mundial da Saúde
14.
Genes (Basel) ; 13(4)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35456480

RESUMO

Gap junction intercellular communication (GJIC) is considered a key mechanism in the regulation of tissue homeostasis. GJIC structures are organized in two transmembrane channels, with each channel formed by connexins (Cxs). GJIC and Cxs expression alterations are related to the process of tumorigenesis in different cell types. Pituitary neuroendocrine tumors (PitNETs) represent 15-20% of intracranial neoplasms, and usually display benign behavior. Nevertheless, some may have aggressive behavior, invading adjacent tissues, and featuring a high proliferation rate. We aimed to assess the expression and relevance of GJIC and Cxs proteins in PitNETs. We evaluated the mRNA expression levels of Cx26, 32, and 43, and the protein expression of Cx43 in a series of PitNETs. In addition, we overexpressed Cx43 in pituitary tumor cell lines. At the mRNA level, we observed variable expression of all the connexins in the tumor samples. Cx43 protein expression was absent in most of the pituitary tumor samples that were studied. Moreover, in vitro studies revealed that the overexpression of Cx43 decreases cell growth and induces apoptosis in pituitary tumor cell lines. Our results indicate that the downregulation of Cx43 protein might be involved in the tumorigenesis of most pituitary adenomas and have a potential therapeutic value for pituitary tumor therapy.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Conexina 43/genética , Conexinas/genética , Conexinas/metabolismo , Humanos , Neoplasias Hipofisárias/genética , RNA Mensageiro/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-35077874

RESUMO

Tributyltin (TBT) is an endocrine disruptor chemical (EDC) capable of altering the proper function of the hypothalamus-pituitary thyroid (HPT) axis. This study aimed to evaluate the subacute effects of TBT on the HPT axis of male and female rats. A dose of 100 ng/kg/day TBT was used in both sexes over a 15-day period, and the morphophysiology and gene expression of the HPT axis were assessed. TBT exposure increased the body weight in both sexes, while food efficiency increased - only in male rats. It was also possible to note alterations in the thyroid, with the presence of a stratified epithelium, cystic degeneration, and increased interstitial collagen deposition. A reduction in T3 and T4 levels was only observed in TBT male rats. A reduction in TSH levels was observed in TBT female rats. Evaluating mRNA expression, we observed a decrease in hepatic D1 and TRH mRNA levels in TBT female rats. An increase in D2 mRNA expression in the hypothalamus was observed in TBT male rats. Additionally, no significant changes in TRH or hepatic D1 mRNA expression in TBT male rats or in hypothalamic D1 and D2 mRNA expression in TBT female rats were observed. Thus, we can conclude that TBT has different toxicological effects on male and female rats by altering thyroid gland morphophysiology, leading to abnormal HPT axis function, and even at subacute and low doses, it may be involved in complex endocrine and metabolic disorders.


Assuntos
Sistema Hipotálamo-Hipofisário , Glândula Tireoide , Animais , Feminino , Hipotálamo , Masculino , Mamíferos , Ratos , Ratos Wistar , Compostos de Trialquitina
16.
Endocr Relat Cancer ; 28(7): 505-519, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34010147

RESUMO

Breast cancer and thyroid dysfunctions have been associated for decades. Although many studies suggest a biological correlation, the mechanisms linking these two pathologies have not been elucidated. Reactive oxygen species (ROS) can oxidize lipids, proteins, and DNA molecules and may promote tumor initiation. Hence, we aimed at evaluating the mammary redox balance and genomic instability in a model of experimental hypothyroidism. Female Wistar rats were treated with 0.03% methimazole for 7 or 21 days to evaluate ROS generation, antioxidant enzyme activities, and oxidative stress biomarkers, as well as genomic instability. After 7 days, lower catalase, GPX, and DUOX activities were detected in the breast of hypothyroid group compared to the control while the levels of 4-hydroxynonenal (HNE) were higher. In addition, hypothyroid group showed an increase in γH2Ax/H2Ax ratio. Twenty-one days hypothyroid group had increased catalase and SOD activities, without significant differences between groups in the levels of oxidative stress biomarkers and DNA damage. TSH-treated MCF10A cells showed a higher extracellular, intracellular, and mitochondrial ROS production. Additionally, greater DNA damage was observed in these cells, demonstrated by a higher comet tail DNA percentage and increased 53BP1 foci. Finally, we found that TSH treatment was not able to alter cell viability. The Genome Cancer Atlas (TGCA) data showed that high TSHR expression is associated with more invasive breast cancer types. In conclusion, we demonstrate that oxidative stress and DNA damage in breast are early events of experimental hypothyroidism. Moreover, high TSH levels induce oxidative stress and genomic instability in mammary cells.


Assuntos
Neoplasias da Mama , Hipotireoidismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores , Neoplasias da Mama/genética , Catalase/metabolismo , Dano ao DNA , Feminino , Instabilidade Genômica , Humanos , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tireotropina
17.
Environ Toxicol ; 36(7): 1338-1348, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33760381

RESUMO

Ouabain is a steroid described as a compound extracted from plants that is capable of binding to Na+ , K+ -ATPase, inhibiting ion transport and triggering cell signaling pathways. Due to its positive ionotropic effect, ouabain was used for more than 200 years for the treatment of cardiac dysfunctions. Numerous antitumor effects of ouabain have been described so far; however, its role on thyroid cancer is still poorly understood. Therefore, the aim of the present work was to evaluate the effect of ouabain on the biology of human papillary thyroid cancer cells. For this, three human thyroid cell lines were used: NTHY-ori, a non-tumor lineage, BCPAP and TPC-1, both derived from papillary carcinomas. Cells were cultured in the presence or absence of ouabain. Subsequently, we evaluated its effects on the viability, cell death, cell cycle, and migratory ability of these cell lines. We also investigated the impact of ouabain in IL-6/IL-6R and epithelial to mesenchymal transition markers expression. Our results indicate that ouabain (10-7 M), decreased the number of NTHY-ori, TPC-1 and BCPAP viable cells and induced cell cycle arrest after in vitro culture, but did not appear to promote cell death. In TPC-1 cells ouabain also inhibited cell migration; increased IL-6/IL-6R expression and IL-6 secretion; and diminished vimentin and SNAIL-1 expression. Collectively, our results indicate that ouabain has an antitumoral role on human papillary thyroid carcinomas in vitro. Even though additional studies are necessary, our work contributes to the discussion of the possibility of new clinical trials of ouabain.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Carcinoma Papilar/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Ouabaína , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/tratamento farmacológico
18.
Toxicol Mech Methods ; 31(2): 90-99, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33054482

RESUMO

Bisphenol A (BPA) is a well-known endocrine disruptor with several effects on mammalian systems and has been linked to diseases, such as cancer. Bisphenol S (BPS) emerged as a likely alternative to BPA in industrial production. Despite being well studied and exhibiting BPA-like toxic capacity, many effects are still being elucidated. The blood coagulation system is well controlled in an effort to minimize blood loss. To our knowledge, no study reported actions of bisphenols in this system. The aim of this work was to evaluate the effects of bisphenols on blood coagulation. Zebrafish were used to measure bleeding time. To assess possible mechanisms, platelet-rich plasma was incubated with both bisphenols in the presence of arachidonic acid. Prothrombin time (PT) and activated partial thromboplastin time (APTT) assays were performed in the presence of BPA and BPS. Alignment of human factor VII sequence was compared to zebrafish and docking simulations performed with FVIIa and bisphenols. An extended time was observed in BPA-treated but not BPS-treated animals in bleeding time; in PT, bisphenols showed no effect. APTT was increased in the highest concentration of bisphenols, with no effects in platelet aggregation, indicating interference with factor VII. Protein alignment showed that both proteins have well conserved residues, as those being required for interaction of FVIIa-BPA and FVIIa-BPS complexes, as shown in molecular docking. Taken together, these data show BPA and BPS as capable of interfering with the coagulation process via FVIIa.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Compostos Benzidrílicos/toxicidade , Coagulação Sanguínea , Humanos , Simulação de Acoplamento Molecular , Fenóis/toxicidade
19.
Toxicol Lett ; 332: 42-55, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629074

RESUMO

Obesity is associated with several female reproductive complications, such as polycystic ovary syndrome (PCOS). The exact mechanism of this relationship remains unclear. Few previous studies using diet containing refined carbohydrate (HCD) leading to obesity have been performed and it is unclear if HCD is linked with reproductive dysfunctions. In this investigation, we assessed whether subchronic HCD exposure results in reproductive and other irregularities. Female rats were fed with HCD for 15 days and metabolic outcomes and reproductive tract morphophysiology were assessed. We further assessed reproductive tract inflammation, oxidative stress (OS) and fibrosis. HCD rats displayed metabolic impairments, such as an increase in body weight/adiposity, adipocyte hypertrophic, abnormal lipid profile, glucose tolerance and insulin resistance (IR) and hyperleptinemia. Improper functioning of the HCD reproductive tract was observed. Specifically, irregular estrous cyclicity, high LH levels and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. Improper follicular development and a reduction in antral follicles, corpora lutea and granulosa layer area together with an increase in cystic follicles were apparent. Uterine atrophy and reduction in endometrial gland (GE) number was observed in HCD rats. Reproductive tract inflammation, OS and fibrosis were seen in HCD rats. Further, strong positive correlations were observed between body weight/adiposity and IR with estrous cycle length, cystic follicles, ovarian reserve, GE and other abnormalities. Thus, these data suggest that the subchronic HCD exposure led to PCOS-like features, impaired ovarian reserve, GE number, and other reproductive abnormalities in female rats.


Assuntos
Carboidratos da Dieta/toxicidade , Reserva Ovariana/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal , Dieta , Ciclo Estral/efeitos dos fármacos , Feminino , Fibrose , Intolerância à Glucose/sangue , Intolerância à Glucose/induzido quimicamente , Resistência à Insulina , Leptina/sangue , Metabolismo dos Lipídeos , Folículo Ovariano/efeitos dos fármacos , Ovário/patologia , Estresse Oxidativo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165675, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927001

RESUMO

Zinc is a key component of several proteins, interacting with the pancreatic hormones insulin and amylin. The role of zinc in insulin oligomerization and crystallinity is well established, although the effects of dietary zinc restriction on both energetic metabolism and ß-pancreatic hormonemia and morphology remain unexplored. Here we report the effects of dietary zinc restriction on the endocrine pancreas and metabolic phenotype of mice. Nontransgenic male Swiss mice were fed a low-zinc or control diet for 4 weeks after weanling. Growth, glycemia, insulinemia and amylinemia were lower and pancreatic islets were smaller in the intervention group despite the preserved insulin crystallinity in secretory granules. We found strong immunostaining for insulin, amylin and oligomers in apoptotic pancreatic islet. High production of ß-pancreatic hormones in zinc-restricted animals counteracted the reduced islet size caused by apoptosis. These data suggest that zinc deficiency is sufficient to promote islet ß-cell hormonal disruption and degeneration.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Ilhotas Pancreáticas/patologia , Zinco/deficiência , Ração Animal , Animais , Apoptose , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/patologia , Suplementos Nutricionais , Humanos , Insulina/sangue , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA