RESUMO
BACKGROUND: Rib fractures are a common traumatic injury affecting more than 350,000 patients a year. Early stabilization has shown to be effective in reducing pulmonary complications. Platelet-rich plasma (PRP) is a growth factor-rich blood product known to improve soft tissue and bone healing. We hypothesized that the addition of PRP to a rib fracture site would accelerate callus formation and improve callus strength. METHODS: Platelet-rich plasma was isolated from pooled Lewis rat blood and quantified. Thirty-two Lewis rats underwent fracture of the sixth rib and were treated with 100 µL PRP (1 × 106 platelets/µL) or saline. At 2 weeks, ribs were harvested and underwent a 3-point bend, x-ray, and microcomputed tomography, and callus sections were stained with 4',6-diamidino-2-phenylindole and Alcian blue and picrosirius red. At 6 weeks, ribs were harvested and underwent a 3-point bend test, x-ray, microcomputed tomography, and Alcian blue and picrosirius red staining. RESULTS: At 2 weeks, PRP increased callus diameter (9.3 mm vs. 4.3 mm, p = 0.0002), callus index (4.5 vs. 2.1, p = 0.0002), bone volume/total volume (0.0551 vs. 0.0361, p = 0.0024), cellularization (2,364 vs. 1,196, p < 0.0001), and cartilage (12.12% vs. 3.11%, p = 0.0001) and collagen (6.64% vs. 4.85%, p = 0.0087) content compared with controls. At 6 weeks, PRP increased fracture callus diameter (5.0 mm vs. 4.0 mm, 0.0466), callus index (2.5 vs. 2.0, p = 0.0466), BV/TV (0.0415 vs. 0.0308, p = 0.0358), and higher cartilage (8.21% vs. 3.26%, p < 0.0001) and collagen (37.61% vs. 28.00%, p = 0.0022) content compared with controls. At 6 weeks, PRP samples trended toward improved mechanical characteristics; however, these results did not reach significance (p > 0.05). CONCLUSION: Rib fractures are a common injury, and accelerated stabilization could improve clinical outcomes. Platelet-rich plasma significantly increased callus size, calcium deposition, and cartilage and collagen content at 2 and 6 weeks and trended toward improved strength and toughness on mechanical analysis at 6 weeks compared with controls, although this did not reach significance. These findings suggest that PRP may be a useful adjunct to accelerate and improve fracture healing in high-risk patients.
RESUMO
Osteoarthritis (OA) and posttraumatic OA (PTOA) are caused by an imbalance in catabolic and anabolic processes in articular cartilage and proinflammatory changes throughout the joint, leading to joint degeneration and pain. We examined whether interleukin-6 (IL-6) signaling contributed to cartilage degradation and pain in PTOA. Genetic ablation of Il6 in male mice decreased PTOA-associated cartilage catabolism, innervation of the knee joint, and nociceptive signaling without improving PTOA-associated subchondral bone sclerosis or chondrocyte apoptosis. These effects were not observed in female Il6-/- mice. Compared with wild-type mice, the activation of the IL-6 downstream mediators STAT3 and ERK was reduced in the knees and dorsal root ganglia (DRG) of male Il6-/- mice after knee injury. Janus kinases (JAKs) were critical for STAT and ERK signaling in cartilage catabolism and DRG pain signaling in tissue explants. Whereas STAT3 signaling was important for cartilage catabolism, ERK signaling mediated neurite outgrowth and the activation of nociceptive neurons. These data demonstrate that IL-6 mediates both cartilage degradation and pain associated with PTOA in a sex-specific manner and identify tissue-specific contributions of downstream effectors of IL-6 signaling, which are potential therapeutic targets for disease-modifying OA drugs.
Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Osteoartrite/genética , Dor/metabolismoRESUMO
Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow-associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single-cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow-associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte-derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.
Assuntos
Medula Óssea , Condrócitos , Adipócitos , Animais , Diferenciação Celular , Camundongos , Osteoblastos , Osteogênese , RNA/metabolismo , Células-Tronco/metabolismoRESUMO
Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.
Assuntos
Proteínas Hedgehog/genética , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX9/genética , Polidactilia/genética , Polegar/anormalidades , Fatores de Transcrição HES-1/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Divisão Celular/genética , Proliferação de Células/genética , Condrogênese/genética , Cromatina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/metabolismo , Mesoderma/crescimento & desenvolvimento , Camundongos , Polidactilia/patologia , Polegar/patologiaRESUMO
Emerging immune therapy, such as with the anti-programmed cell death-1 (anti-PD-1) monoclonal antibody nivolumab, has shown efficacy in tumor suppression. Patients with terminal cancer suffer from cancer pain as a result of bone metastasis and bone destruction, but how PD-1 blockade affects bone cancer pain remains unknown. Here, we report that mice lacking Pdcd1 (Pd1-/-) demonstrated remarkable protection against bone destruction induced by femoral inoculation of Lewis lung cancer cells. Compared with WT mice, Pd1-/- mice exhibited increased baseline pain sensitivity, but the development of bone cancer pain was compromised in Pd1-/- mice. Consistently, these beneficial effects in Pd1-/- mice were recapitulated by repeated i.v. applications of nivolumab in WT mice, even though nivolumab initially increased mechanical and thermal pain. Notably, PD-1 deficiency or nivolumab treatment inhibited osteoclastogenesis without altering tumor burden. PD-L1 and CCL2 are upregulated within the local tumor microenvironment, and PD-L1 promoted RANKL-induced osteoclastogenesis through JNK activation and CCL2 secretion. Bone cancer upregulated CCR2 in primary sensory neurons, and CCR2 antagonism effectively reduced bone cancer pain. Our findings suggest that, despite a transient increase in pain sensitivity following each treatment, anti-PD-1 immunotherapy could produce long-term benefits in preventing bone destruction and alleviating bone cancer pain by suppressing osteoclastogenesis.
Assuntos
Neoplasias Ósseas , Dor do Câncer , Carcinoma Pulmonar de Lewis , Proteínas de Neoplasias , Nivolumabe/farmacologia , Osteoclastos/metabolismo , Receptor de Morte Celular Programada 1 , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Feminino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoclastos/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Intervertebral disc (IVD) degeneration is the major cause of back pain. Notch signaling is activated in annulus fibrosus (AF) and nucleus pulposus (NP) tissues of degenerated IVDs, and induced by IL1-ß and TNF-α in NP cells. However, the role of Notch activatin in the pathogenesis of IVD degeneration is largely unknown. In this study, we overexpressed the Notch1 intracellular domain (NICD1) in AF, NP, and chondrogenic ATDC5 cells via adenoviruses. Overexpression of NICD1 activated transcription of Notch signaling target genes in AF, NP, and ATDC5 cells, and caused cell type-specific effects on expression of matrix anabolic and catabolic genes. Activation of Notch signaling promoted expression of matrix catabolic genes and inhibited expression of matrix anabolic genes in both AF and ATDC5 cells, whereas its activation suppressed expression of matrix catabolic genes (including Mmp3, Mmp13, Adamts4, and Adamts5) and attenuated TNF-α and inflammatory macrophage-induced Mmp13 expression in NP cells. Consistently, sustained activation of Notch1 signaling in postnatal IVDs in mice severely disrupted growth plate and endplate cartilage tissues, but did not overly affect NP tissues. Together, these data indicated that activation of Notch signaling exerted differential and cell type-specific effects in intervertebral discs, and specific Notch signaling regulation may be considered during the treatment of IVD degeneration.
Assuntos
Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/genética , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Receptor Notch1/metabolismo , Animais , Anel Fibroso/patologia , Linhagem da Célula/genética , Condrogênese/genética , Regulação da Expressão Gênica/genética , Humanos , Interleucina-1beta/genética , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Macrófagos/metabolismo , Camundongos , Núcleo Pulposo/patologia , Ratos , Receptores Notch/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genéticaRESUMO
During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies.
Assuntos
Desenvolvimento Ósseo/fisiologia , Colesterol/biossíntese , Condrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular/fisiologia , Colesterol/genética , Condrócitos/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologiaRESUMO
While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.
Assuntos
Reabsorção Óssea/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Estrogênios/metabolismo , Osteogênese/fisiologia , Transdução de Sinais , Animais , Canais de Cálcio Tipo L/genética , Proliferação de Células , Condrócitos/patologia , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/metabolismo , Estrogênios/genética , Feminino , Fêmur/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos , Osteoprotegerina/metabolismo , OvariectomiaRESUMO
RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem/embriologia , Cartilagem/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Proteínas Repressoras/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Desenvolvimento Ósseo/genética , Diferenciação Celular , Proliferação de Células , Condrogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipertrofia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição HES-1/genética , Transcrição GênicaRESUMO
Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.
Assuntos
Células da Medula Óssea/metabolismo , Consolidação da Fratura , Fraturas Ósseas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/patologia , Fraturas Ósseas/genética , Fraturas Ósseas/patologia , Camundongos , Camundongos Transgênicos , Receptores Notch/genética , Células-Tronco/patologia , Células Estromais/metabolismo , Células Estromais/patologiaRESUMO
Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair.
Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Receptor Notch2/biossíntese , Transdução de Sinais , Células-Tronco/metabolismo , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Jagged-1 , Proteínas de Membrana , Ortopedia , Medicina Regenerativa , Proteínas Serrate-Jagged , Células-Tronco/citologia , Células Estromais/citologia , Células Estromais/metabolismoRESUMO
Post-translational modification of proteins by small ubiquitin-related modifier (SUMO) is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP) family, capable of SUMO removal, are involved in the reversed conjugation process. Although SUMO-specific proteases are known to reverse sumoylation in many well-defined systems, their importance in mammalian development and pathogenesis remains largely elusive. In patients with neurodegenerative diseases, aberrant accumulation of SUMO-conjugated proteins has been widely described. Several aggregation-prone proteins modulated by SUMO have been implicated in neurodegeneration, but there is no evidence supporting a direct involvement of SUMO modification enzymes in human diseases. Here we show that mice with neural-specific disruption of SENP2 develop movement difficulties which ultimately results in paralysis. The disruption induces neurodegeneration where mitochondrial dynamics is dysregulated. SENP2 regulates Drp1 sumoylation and stability critical for mitochondrial morphogenesis in an isoform-specific manner. Although dispensable for development of neural cell types, this regulatory mechanism is necessary for their survival. Our findings provide a causal link of SUMO modification enzymes to apoptosis of neural cells, suggesting a new pathogenic mechanism for neurodegeneration. Exploring the protective effect of SENP2 on neuronal cell death may uncover important preventive and therapeutic strategies for neurodegenerative diseases.
Assuntos
Cisteína Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Cisteína Endopeptidases/genética , Dinaminas/genética , Dinaminas/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Mitocôndrias/genética , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Neurônios/patologia , Paralisia/genética , Paralisia/metabolismo , Estabilidade Proteica , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , SumoilaçãoRESUMO
To identify factors that are necessary and sufficient for chondrocyte hypertrophic differentiation and cartilage matrix mineralization, primary chondrocyte culture models have been developed. Here we describe the isolation, short-term and long-term culture, and analysis of primary costal chondrocytes from the mouse. Briefly, sternae and rib cages from neonatal pups are dissected, and chondrocytes are isolated via enzymatic digestions. Chondrocytes are then plated at high density and cultured in the presence of ascorbic acid and beta-glycerophosphate as well as various recombinant proteins to promote or inhibit hypertrophic differentiation. We also describe the use of adenoviruses to recombine floxed alleles and over-express genes within these cultures. Finally, we detail methods for alkaline phosphatase and alizarin red staining that are used to visualize chondrocyte maturation and cartilage matrix mineralization.
Assuntos
Condrócitos/citologia , Cultura Primária de Células/métodos , Animais , Separação Celular , Histocitoquímica , CamundongosRESUMO
The Notch signaling pathway has emerged as an important regulator of endochondral bone formation. Although recent studies have examined the role of Notch in mesenchymal and chondro-osteo progenitor cell populations, there has yet to be a true examination of Notch signaling specifically within developing and committed chondrocytes, or a determination of whether cartilage and bone formation are regulated via RBPjκ-dependent or -independent Notch signaling mechanisms. To develop a complete understanding of Notch signaling during cartilage and bone development we generated and compared general Notch gain-of-function (Rosa-NICD(f/+)), RBPjκ-deficient (Rbpjκ(f/f)), and RBPjκ-deficient Notch gain-of-function (Rosa-NICD(f/+);Rbpjκ(f/f)) conditional mutant mice, where activation or deletion of floxed alleles were specifically targeted to mesenchymal progenitors (Prx1Cre) or committed chondrocytes (inducible Col2Cre(ERT2)). These data demonstrate, for the first time, that Notch regulation of chondrocyte maturation is solely mediated via the RBPjκ-dependent pathway, and that the perichodrium or osteogenic lineage probably influences chondrocyte terminal maturation and turnover of the cartilage matrix. Our study further identifies the cartilage-specific RBPjκ-independent pathway as crucial for the proper regulation of chondrocyte proliferation, survival and columnar chondrocyte organization. Unexpectedly, the RBPjκ-independent Notch pathway was also identified as an important long-range cell non-autonomous regulator of perichondral bone formation and an important cartilage-derived signal required for coordinating chondrocyte and osteoblast differentiation during endochondral bone development. Finally, cartilage-specific RBPjκ-independent Notch signaling likely regulates Ihh responsiveness during cartilage and bone development.
Assuntos
Cartilagem/embriologia , Condrogênese , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Osteogênese , Receptores Notch/metabolismo , Animais , Osso e Ossos/embriologia , Cartilagem/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Células-Tronco Mesenquimais , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Receptores Notch/genética , Transdução de SinaisRESUMO
We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we create a new mouse strain permitting conditional inactivation of Gpr177. The loss of Gpr177 in the Wnt1-expressing cells causes mid/hindbrain and craniofacial defects which are far more severe than the Wnt1 knockout, but resemble the double knockout of Wnt1 and Wnt3a as well as ß-catenin deletion in the Wnt1-expressing cells. Our findings demonstrate the importance of Gpr177 in Wnt1-mediated development of the mouse embryo, suggesting an overlapping function of Wnt family members in the Wnt1-expressing cells.
Assuntos
Encéfalo/embriologia , Ossos Faciais/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Crânio/embriologia , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , Animais , Encéfalo/anormalidades , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Ossos Faciais/anormalidades , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Crânio/anormalidades , Proteínas Wnt/genética , Proteína Wnt1/genética , Proteína Wnt3 , Proteína Wnt3ARESUMO
BACKGROUND: Mouse genetic study has demonstrated that Axin2 is essential for calvarial development and disease. Haploid deficiency of ß-catenin alleviates the calvarial phenotype caused by Axin2 deficiency. This loss-of-function study provides evidence for the requirement of ß-catenin in exerting the downstream effects of Axin2. RESULTS: Here we utilize a gain-of-function analysis to further assess the role of ß-catenin. A transgenic expression system permitting conditional activation of ß-catenin in a spatiotemporal specific manner has been developed. Aberrant stimulation of ß-catenin leads to increases in expansion of skeletogenic precursors and the enhancement of bone ossification reminiscent to the loss of Axin2. The constitutively active signal promotes specification of osteoprogenitors, but prevents their maturation into terminally differentiated osteoblasts, along the osteoblast lineage. However, the prevention does not interfere with bone synthesis, suggesting that mineralization occurs without the presence of mature osteoblasts. ß-catenin signaling apparently plays a key role in suture development through modulation of calvarial morphogenetic signaling pathways. Furthermore, genetic inactivation of the ß-catenin transcriptional target, cyclin D1, impairs expansion of the skeletogenic precursors contributing to deficiencies in calvarial ossification. There is a specific requirement for cyclin D1 in populating osteoprogenitor cell types at various developmental stages. CONCLUSION: These findings advance our knowledge base of Wnt signaling in calvarial morphogenesis, suggesting a key regulatory pathway of Axin2/ß-catenin/cyclin D1 in development of the suture mesenchyme.
Assuntos
Suturas Cranianas , Ciclina D1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mesoderma , Morfogênese/fisiologia , Crânio , beta Catenina/metabolismo , Animais , Proteína Axina , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Suturas Cranianas/anatomia & histologia , Suturas Cranianas/embriologia , Suturas Cranianas/metabolismo , Proteínas do Citoesqueleto/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/anatomia & histologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/fisiologia , Transdução de Sinais/fisiologia , Crânio/anatomia & histologia , Crânio/embriologia , Crânio/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genéticaRESUMO
Craniosynostosis, a developmental disorder resulting from premature closure of the gaps (sutures) between skull bones, can be caused by excessive intramembranous ossification, a type of bone formation that does not involve formation of a cartilage template (chondrogenesis). Here, we show that endochondral ossification, a type of bone formation that proceeds through a cartilage intermediate, caused by switching the fate of mesenchymal stem cells to chondrocytes, can also result in craniosynostosis. Simultaneous knockout of Axin2, a negative regulator of the WNT-beta-catenin pathway, and decreased activity of fibroblast growth factor (FGF) receptor 1 (FGFR1) in mice induced ectopic chondrogenesis, leading to abnormal suture morphogenesis and fusion. Genetic analyses revealed that activation of beta-catenin cooperated with FGFR1 to alter the lineage commitment of mesenchymal stem cells to differentiate into chondrocytes, from which cartilage is formed. We showed that the WNT-beta-catenin pathway directly controlled the stem cell population by regulating its renewal and proliferation, and indirectly modulated lineage specification by setting the balance of the FGF and bone morphogenetic protein pathways. This study identifies endochondral ossification as a mechanism of suture closure during development and implicates this process in craniosynostosis.
Assuntos
Condrogênese , Células-Tronco Mesenquimais/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Proteína Axina , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Craniossinostoses/genética , Craniossinostoses/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Crânio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Targeted gene disruption or expression often encounters lethality. Conditional approaches, permitting manipulation at desired stages, are required to overcome this problem in order to analyze gene function in later developmental processes. Wnt1 has been shown to be expressed in neural crest precursors at the dorsal midline region. However, its expression was not detected in emigrated neural crest cells, the descendants of Wnt1-expressing precursors. We have developed mouse transgenic systems to manipulate gene activity in the Wnt1-expressing precursors and their derivatives by integrating the tetracycline-dependent activation and Cre-mediated recombination methods. A new Wnt1-rtTA strain, carrying rtTA under control of Wnt1 regulatory elements, has been created for gene manipulation in a spatiotemporal-specific fashion. Together with our previously developed Wnt1-Cre;R26STOPrtTA model, these systems permit conditional gene expression and ablation in pre-migratory and/or post-migratory neural crest cells. This study demonstrated the versatility of our mouse models to achieve gene manipulation in early neural development.