Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624205

RESUMO

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Hipóxia/etiologia , Inflamação/complicações , Pulmão , Lesão Pulmonar/complicações , Camundongos
2.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962944

RESUMO

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Assuntos
MicroRNAs , Sepse , Animais , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Sepse/genética , Sepse/metabolismo
3.
J Clin Invest ; 127(9): 3407-3420, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805660

RESUMO

Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.


Assuntos
Glicogênio/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neutrófilos/citologia , Infecções Pneumocócicas/imunologia , Doença Aguda , Animais , Lavagem Broncoalveolar , Colite/metabolismo , Glicólise , Humanos , Imunidade Inata , Inflamação , Leucócitos/citologia , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
4.
J Immunol ; 192(5): 2442-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24470502

RESUMO

CD4(+) T cells have long been grouped into distinct helper subsets on the basis of their cytokine-secretion profile. In recent years, several subsets of innate lymphoid cell have been described as key producers of these same Th-associated cytokines. However, the functional relationship between Th cells and innate lymphoid cells (ILCs) remains unclear. We show in this study that lineage-negative ST2(+)ICOS(+)CD45(+) type 2 ILCs and CD4(+) T cells can potently stimulate each other's function via distinct mechanisms. CD4(+) T cell provision of IL-2 stimulates type 2 cytokine production by type 2 ILCs. By contrast, type 2 ILCs modulate naive T cell activation in a cell contact-dependent manner, favoring Th2 while suppressing Th1 differentiation. Furthermore, a proportion of type 2 ILCs express MHC class II and can present peptide Ag in vitro. Importantly, cotransfer experiments show that type 2 ILCs also can boost CD4(+) T cell responses to Ag in vivo.


Assuntos
Antígenos de Diferenciação/imunologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata/fisiologia , Células Th2/imunologia , Animais , Antígenos de Diferenciação/genética , Diferenciação Celular/genética , Citocinas/genética , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th1/citologia , Células Th1/imunologia , Células Th2/citologia
5.
J Allergy Clin Immunol ; 130(5): 1159-1166.e6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22738676

RESUMO

BACKGROUND: The IL-1 family cytokine IL-33 is involved in the induction of airway inflammation in allergic patients and after viral infection. Several cell types, including CD4(+) T(H)2 cells and the recently described type 2 innate lymphoid cells (ILCs), are targets for IL-33, yet the mechanisms by which this cytokine modulates their activation are not clear. OBJECTIVES: Our goal was to investigate a role for mammalian target of rapamycin (mTOR) signaling in the activation of T(H)2 and ILC responses and the induction of airway inflammation by IL-33. METHODS: We biochemically determined the effect of IL-33 on mTOR activation in T(H)2 cells and ILCs and examined the effect of this signaling pathway in vivo using a murine model of IL-33-induced lung inflammation. RESULTS: We found that IL-33 induces mTOR activation through p110δ phosphoinositide 3-kinase and that blockade of the mTOR pathway inhibited IL-33-induced IL-5 and IL-13 production by T(H)2 cells and ILCs. Furthermore, use of a ribosomal protein S6 kinase 1 inhibitor implicated a role for ribosomal protein S6 kinase 1 in IL-33-induced mTOR-dependent cytokine production. Intranasal administration of IL-33 to wild-type mice induced airway inflammation, whereas adoptive transfer of wild-type ILCs to IL-33 receptor-deficient (St2(-/-)) mice recapitulated this response. Importantly, coadministration of the mTOR inhibitor rapamycin reduced IL-33-dependent ILC, macrophage, and eosinophil accumulation; cytokine secretion; and mucus deposition in the airways. CONCLUSION: These data reveal a hitherto unrecognized role of mTOR signaling in IL-33-driven, ILC-dependent inflammation in vivo and suggest that manipulation of this pathway might represent a target for therapeutic intervention for airway inflammation.


Assuntos
Interleucinas/administração & dosagem , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th2/efeitos dos fármacos , Animais , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/metabolismo , Interleucina-33 , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pneumonia/induzido quimicamente , Receptores de Interleucina/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th2/imunologia , Células Th2/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA