Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 846: 157358, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850328

RESUMO

There has been a growing interest in poly(ethylene terephthalate) PET degradation studies in the last few years due to its widespread use and large-scale plastic waste accumulation in the environment. One of the most promising enzymatic methods in the context of PET degradation is the use of PETase from Ideonella sakaiensis, which has been reported to be an efficient enzyme for hydrolysing ester bonds in PET. In our study, we expressed a codon-optimized PETase gene in the yeast Yarrowia lipolytica. The obtained strain was tested for its ability to degrade PET directly in culture, and a screening of different supplements that might raise the level of PET hydrolysis was performed. We also carried out long-term cultures with PET film, the surface of which was examined by scanning electron microscopy. The efficiency of PET degradation was tested based on the concentration of degradation products released, and the results showed that supplementation of the culture with olive oil resulted in 66 % higher release of terephthalic acid into the medium compared to the mutant culture without supplementation. The results indicate the possibility of ethylene glycol uptake by both strains, and, additionally, the PETase produced by the newly engineered strain hydrolyses MHET. The structure of the PET film after culture with the modified strain, meanwhile, had numerous surface defects, cracks, and deformations.


Assuntos
Polietilenotereftalatos , Yarrowia , Etilenos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Ácidos Ftálicos , Polietilenotereftalatos/química , Yarrowia/genética
2.
Sci Total Environ ; 831: 154841, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35358523

RESUMO

Polyethylene terephthalate (PET) is the most widely used plastic, whose global production scale causes serious problems due to it being highly non-biodegradable. The present work provides a novel approach to plastic degradation studies, which involves direct degradation of PET in the culture of a modified Y. lipolytica yeast strain extracellularly producing cutinase from Fusarium solani. In this study, we successfully accomplished a scale-up of the degradation process in culture, which is promising from the perspective of wider application of the developed method in the future. Additionally, we tested the effect of various supplements, which may increase the PET degradation efficiency in the culture of the Y. lipolytica pAD CUT_FS strain. The ability of PET decomposition was verified by the amount of the released degradation products, such as terephthalic acid (TPA) and mono-(2-hydroxyethyl)-terephthalic acid (MHET), during cultivation. We observed that the quantities of TPA and MHET released during the PET degradation process were increasing daily, and were 1.51 gL-1 and 0.45 gL-1, respectively after 240 h of the bioreactor fermentation. Analysis of the PET film by electron microscopy indicated that there was abundant damage on the surface of the material. This study also demonstrated that the engineered Y. lipolytica strain is able to degrade PET at 28 °C during fermentation. The results obtained in this study using amorphous PET powder provide a wide range of possibilities for application of the cutinase-secreting strain of Y. lipolytica on the more difficult to degrade highly crystalline PET films, PET bottles and PET melts.


Assuntos
Yarrowia , Etilenos/metabolismo , Engenharia Metabólica/métodos , Ácidos Ftálicos , Plásticos/metabolismo , Polietilenotereftalatos
3.
Bioresour Technol ; 207: 237-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26890799

RESUMO

In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification.


Assuntos
Glicerol/metabolismo , Resíduos Industriais/análise , Yarrowia/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Carbono/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio/metabolismo , Yarrowia/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA