Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(7): 1041-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380793

RESUMO

Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-ß) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.


Assuntos
Âmnio , Células-Tronco Mesenquimais , Proteoma , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Âmnio/citologia , Âmnio/química , Âmnio/metabolismo , Cordão Umbilical/citologia , Proteoma/análise , Proliferação de Células , Matriz Extracelular Descelularizada/química , Materiais Biocompatíveis/química
2.
PLoS One ; 19(2): e0296636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394321

RESUMO

Scorpion venoms are known to contain over 100,000 biologically active constituents. However, only a few of them have been studied. The major constituents of venom are proteins and peptides, which exhibit various biological and pharmacological properties, including anticancer activities. In the current study, the venom of yellow scorpions (Buthus sindicus) found in Sindh, Pakistan, was extracted and evaluated for its anti-cancer and anti-inflammatory activities. The crude venom showed a dose dependent inhibition of phagocyte oxidative burst from human whole blood cells (28.3% inhibition at highest tested concentration of 300 µg/mL). In-vitro cytotoxicity of crude venom was evaluated against human prostrate (PC3), cervical (HeLa) and neuroblastoma (U87-MG) cell lines, along with cytotoxicity against normal human fibroblast (BJ) cells. Crude venom was cytotoxic to all cell lines, with prominent inhibitory effect on PC3 cells. Crude venom was fractionated through RP-UPLC, resulted in fifteen fractions, followed by evaluation of their anticancer potential. Among all, the fraction I significantly (P < 0.001) reduced the cell viability of all three cancer cell lines, and exhibited insignificant cytotoxicity against normal cell line. Furthermore, the apoptotic cell death pathway was evaluated for crude venom, and fraction I, in most sensitive cell line PC3, by using flow-cytometry analysis. Both crude venom and its fraction I caused a mitochondrial-mediated apoptosis in prostate cancer cells (PC3). To the best of our knowledge, this is the first report of the anticancer and anti-inflammatory activity of venom of Pakistani yellow scorpions. Results indicate their therapeutic potential, and a case for further purification and validation studies.


Assuntos
Venenos de Escorpião , Escorpiões , Masculino , Animais , Humanos , Próstata , Peptídeos/química , Apoptose , Linhagem Celular Tumoral , Encéfalo , Anti-Inflamatórios/farmacologia , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
3.
J Photochem Photobiol B ; 251: 112841, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194816

RESUMO

The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.


Assuntos
Dano ao DNA , Raios Ultravioleta , Humanos , Espécies Reativas de Oxigênio , Dímeros de Pirimidina , Inflamação
4.
Sci Rep ; 12(1): 20907, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463260

RESUMO

Ultraviolet-A (UVA) radiation is a major contributor to reactive oxygen species (ROS), reactive nitrite species (RNS), inflammation, and DNA damage, which causes photoaging and photocarcinogenesis. This study aimed to evaluate the UVA protective potential of lipophilic chain conjugated thiourea-substituted aryl group molecules against UVA-induced cellular damages in human dermal fibroblasts (BJ cell line). We tested a series of nineteen (19) molecules for UVA photoprotection, from which 2',5'-dichlorophenyl-substituted molecule DD-04 showed remarkable UVA protection properties compared to the reference (benzophenone). The results indicate that DD-04 significantly reduced intracellular ROS and nitric oxide (NO) as compared to the UVA-irradiated control (p < 0.001). Moreover, the compound DD-04 showed anti-inflammatory activity as it significantly reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) pro-inflammatory cytokines produced by THP-1 (human monocytic) cells (p < 0.05). DNA damage was also prevented by DD-04 treatment in the presence of UVA. It was observed that DD-04 significantly reduced the number of cyclobutane pyrimidine dimers (CPDs) when compared to the UVA-irradiated control (p < 0.001). Finally, the DNA strand breaks were checked and a single intact DNA band was seen upon treatment with DD-04 in the presence of UVA. In conclusion, DD-04 can be considered a potential candidate UVA filter due to its photoprotective potential.


Assuntos
Dano ao DNA , Tioureia , Humanos , Tioureia/farmacologia , Espécies Reativas de Oxigênio , Dímeros de Pirimidina , DNA
5.
Mol Omics ; 18(2): 123-132, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34851339

RESUMO

Areca nut or betel nut chewing is most frequently used in Pakistan and is associated with a high risk for oral cancer. Until now, however, there has not been any research conducted on the long-term effect(s) of betel nut chewing on the saliva proteome. In the present study, initially, the changes in the saliva proteome associated with betel nut chewing were investigated. Secondly, the analysis was focused on the changes in salivary proteome with respect to prolonged usage of betel nuts. After extraction, the saliva proteins were digested into peptides and these were subsequently analyzed using mass spectrometry. Data are available via ProteomeXchange with identifier PXD029768. Label-free quantitation of saliva samples revealed a total of 12 proteins that were differentially expressed between betel nut addicts (BNAs), and the control group. The study groups were further divided into three subgroups, the BNA-1, BNA-2, and BNA-3 groups, with respect to the extent of consumption of betel nuts in terms of years. The data analysis revealed a more detailed profiling of proteins expressed after five, ten, and more than ten years of betel nut consumption. A total of 30, 17, and 22 proteins were found to be differentially expressed when divided into the BNA-1, BNA-2, and BNA-3 groups. The present study shows that the chronic usage of betel nuts leads to the expression of proteins, such as SPARC1, profilin, and SBSN, which are known to be involved in head and neck cancers.


Assuntos
Areca , Neoplasias Bucais , Antígenos de Diferenciação/análise , Antígenos de Diferenciação/metabolismo , Areca/efeitos adversos , Areca/química , Humanos , Mastigação , Neoplasias Bucais/etiologia , Neoplasias Bucais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Saliva/química , Saliva/metabolismo
6.
PLoS One ; 15(12): e0241349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33347462

RESUMO

Beta cell apoptosis induced by proinflammatory cytokines is one of the hallmarks of diabetes. Small molecules which can inhibit the cytokine-induced apoptosis could lead to new drug candidates that can be used in combination with existing therapeutic interventions against diabetes. The current study evaluated several effects of bergenin, an isocoumarin derivative, in beta cells in the presence of cytokines. These included (i) increase in beta cell viability (by measuring cellular ATP levels) (ii) suppression of beta cell apoptosis (by measuring caspase activity), (iii) improvement in beta cell function (by measuring glucose-stimulated insulin secretion), and (iv) improvement of beta cells mitochondrial physiological functions. The experiments were carried out using rat beta INS-1E cell line in the presence or absence of bergenin and a cocktail of proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon- gamma) for 48 hr. Bergenin significantly inhibited beta cell apoptosis, as inferred from the reduction in the caspase-3 activity (IC50 = 7.29 ± 2.45 µM), and concurrently increased cellular ATP Levels (EC50 = 1.97 ± 0.47 µM). Bergenin also significantly enhanced insulin secretion (EC50 = 6.73 ± 2.15 µM) in INS-1E cells, presumably because of the decreased nitric oxide production (IC50 = 6.82 ± 2.83 µM). Bergenin restored mitochondrial membrane potential (EC50 = 2.27 ± 0.83 µM), decreased ROS production (IC50 = 14.63 ± 3.18 µM), and improved mitochondrial dehydrogenase activity (EC50 = 1.39 ± 0.62 µM). This study shows for the first time that bergenin protected beta cells from cytokine-induced apoptosis and restored insulin secretory function by virtue of its anti-inflammatory, antioxidant and anti-apoptotic properties. To sum up, the above mentioned data highlight bergenin as a promising anti-apoptotic agent in the context of diabetes.


Assuntos
Benzopiranos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/farmacologia , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA