Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(5): 1277-1289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38167792

RESUMO

A series of tribenzo[g,l,q]-6H-1,4-diazepino[2,3-b]porphyrazines has been synthesized. A temperature-dependent steric effect was applied in the mixed Linstead macrocyclization of phthalonitrile and 5,7-bis(2'-arylethenyl)-6-propyl-6H-1,4-diazepine-2,3-dicarbonitrile to achieve high yield of low-symmetry A3B-type Mg(II) tribenzo[g,l,q]-6H-1,4-diazepino[2,3-b]porphyrazinate. The analysis of photophysical and photochemical properties of the obtained complexes showed the anti-Kasha effect: the ultrafast spin changes successfully compete with the IC. TD-DFT calculations showed that the presence of 1,4-diazepine heterocycle in the porphyrazine structure leads to the formation of additional charge-transfer triplet state T2. We propose, it could participate in the pumping of T1x state alongside with T1y state (these states are degenerate in D4h symmetry) and, therefore, increase singlet oxygen (1Δg) generation. Stable micellar nanoparticles have been obtained based on the tribenzo[g,l,q]-6H-1,4-diazepino[2,3-b]porphyrazine Mg(II) and Zn(II) complexes using polyvinylpyrrolidone. The nanoparticles effectively interact with model biological structures (FBS and brain homogenate), leading to disaggregation of the macrocycles. They also exhibit pronounced phototoxic effects in MCF-7 cells upon red light irradiation. We propose that enhancement in PDT activity could be explained by their increased resistance to aggregation due to the presence of n-propyl substituent directly attached to the C6 position of the 1,4-diazepine moiety. The demonstrated results show the promising potential of tribenzo-6H-1,4-diazepinoporphyrazines as heavy atom-free photosensitizers.

2.
Curr Cancer Drug Targets ; 18(4): 365-371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28669342

RESUMO

BACKGROUND: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. OBJECTIVE: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. METHOD: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. RESULTS: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. CONCLUSION: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Leucemia Linfoide/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Células HeLa , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patologia , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA