Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948474

RESUMO

Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.


Assuntos
Fungos/fisiologia , Micorrizas/fisiologia , Nicotiana/crescimento & desenvolvimento , Orobanche/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Cromatografia Líquida , Citocininas/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Interações Hospedeiro-Patógeno , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Espectrometria de Massas , Orobanche/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Ácido Salicílico/metabolismo , Nicotiana/microbiologia
2.
Plant Physiol Biochem ; 167: 999-1010, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34592706

RESUMO

To pinpoint ethylene-mediated molecular mechanisms involved in the adaptive response to salt stress we conducted a comparative study of Arabidopsis thaliana wild type (Col-0), ethylene insensitive (ein2-1), and constitutive signaling (ctr1-1) mutant plants. Reduced germination and survival rates were observed in ein2-1 plants at increasing NaCl concentrations. By contrast, ctr1-1 mutation conferred salt stress tolerance during early vegetative development, corroborating earlier studies. Аll genotypes experienced strong stress as evidenced by the accumulation of reactive oxygen species (ROS) and increased membrane lipid peroxidation. However, the isoenzyme profiles of ROS scavenging enzymes demonstrated a higher peroxidase (POX) activity in ctr1-1 individuals under control and salt stress conditions. A markedly elevated free L-Proline (L-Pro) content was detected in the ethylene constitutive mutant. This coincided with the increased levels of Delta-1-Pyrroline-5-Carboxylate Synthase (P5CS) which is the rate-limiting enzyme from the proline biosynthetic pathway. A stabilized upregulation of a stress-induced P5CS1 splice variant was observed in the ctr1-1 background, which was not documented in the ethylene insensitive mutant ein2-1. Transcript profiling of the major SALT OVERLY SENSITIVE (SOS) pathway players (SOS1, SOS2, and SOS3) revealed altered gene expression in the organs of the ethylene signaling mutants. Overall suppressed SOS expression was observed in the ein2-1 mutants while only the SOS transcript profiles in the ctr1-1 roots were similar to the wild type. Altogether, we provide experimental evidence for ethylene-mediated molecular mechanisms implicated in the acclimation response to salt stress in Arabidopsis, which operate mainly through the regulation of free proline accumulation and enhanced ROS scavenging.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dissecação , Etilenos , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Quinases/genética , Receptores de Superfície Celular/metabolismo , Tolerância ao Sal/genética
3.
Plants (Basel) ; 10(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673672

RESUMO

We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.

4.
Nat Commun ; 7: 11710, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271794

RESUMO

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Assuntos
Ácidos/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia
5.
Plant Physiol ; 171(2): 773-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208282

RESUMO

Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form ß-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Fluorescência Verde , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Transdução de Sinais , Zea mays/citologia , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA