Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499768

RESUMO

We report a systematic comparison of 19 plant promoters and 20 promoter-terminator combinations in two expression systems: agroinfiltration in Nicotiana benthamiana leaves, and Nicotiana tabacum BY-2 plant cell packs. The set of promoters tested comprised those not present in previously published work, including several computationally predicted synthetic promoters validated here for the first time. The expression of EGFP driven by different promoters varied by more than two orders of magnitude and was largely consistent between two tested Nicotiana systems. We confirmed previous reports of significant modulation of expression by terminators, as well as synergistic effects of promoters and terminators. Additionally, we observed non-linear effects of gene dosage on expression level. The dataset presented here can inform the design of genetic constructs for plant engineering and transient expression assays.


Assuntos
Nicotiana , Plantas , Nicotiana/genética , Regiões Promotoras Genéticas , Plantas/genética , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
2.
Nat Biotechnol ; 38(8): 944-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341562

RESUMO

Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Nicotiana/genética , Plantas Geneticamente Modificadas/metabolismo , Ácidos Cafeicos/metabolismo , Fungos/genética , Fungos/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478037

RESUMO

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Assuntos
Fungos/genética , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Animais , Vias Biossintéticas/genética , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Duplicação Gênica/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Alinhamento de Sequência , Xenopus laevis
4.
Anticancer Res ; 36(10): 5287-5294, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27798890

RESUMO

BACKGROUND: The rearrangement of actin cytoskeleton is being increasingly considered a marker of cancer cell activity, but the fine structure and remodeling of microfilaments within tumor tissue still remains unclear. MATERIALS AND METHODS: We used the recently introduced silicon-rhodamine (SiR)-actin dye to visualize endogenous actin within tissues by confocal or total internal reflection fluorescence microscopy. We established imaging conditions for robust blinking of SiR-actin, which makes this dye applicable for super-resolution localization microscopy, as well as for an efficient background elimination. RESULTS: We studied tumor tissue samples in two mouse models at high resolution and revealed a complex network of thick curved bundles of actin in cancer cells in tumors. This actin pattern differed strongly from that in cancer cells in vitro and in normal tissues. CONCLUSION: Localization microscopy with SiR-actin provides an efficient way to visualize fine actin structure in tumor tissues. It is potentially applicable to a variety of biological and clinical samples.


Assuntos
Actinas/metabolismo , Corantes/metabolismo , Neoplasias/metabolismo , Rodaminas/metabolismo , Silício/metabolismo , Animais , Linhagem Celular Tumoral , Colo/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Coloração e Rotulagem
5.
Biophys J ; 109(2): 380-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200874

RESUMO

Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP-the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions. In this study we report on an improved variant of WasCFP, named NowGFP, with the anionic form dominating at 37°C and neutral pH. It is 30% brighter than enhanced green fluorescent protein (EGFP) and exhibits a fluorescence lifetime of 5.1 ns. We demonstrated that signals of NowGFP and EGFP can be clearly distinguished by fluorescence lifetime in various models, including mammalian cells, mouse tumor xenograft, and Drosophila larvae. NowGFP thus provides an additional channel for multiparameter fluorescence lifetime imaging microscopy of green fluorescent proteins.


Assuntos
Proteínas de Fluorescência Verde/química , Animais , Animais Geneticamente Modificados , Ânions/química , Drosophila , Escherichia coli , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutação , Processos Fotoquímicos , Temperatura , Triptofano/química , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA