Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 103(1): 87-99, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283570

RESUMO

Widespread aberrant gene expression is a pathological hallmark of polycystic kidney disease (PKD). Numerous pathogenic signaling cascades, including c-Myc, Fos, and Jun, are transactivated. However, the underlying epigenetic regulators are poorly defined. Here we show that H3K27ac, an acetylated modification of DNA packing protein histone H3 that marks active enhancers, is elevated in mouse and human samples of autosomal dominant PKD. Using comparative H3K27ac ChIP-Seq analysis, we mapped over 16000 active intronic and intergenic enhancer elements in Pkd1-mutant mouse kidneys. We found that the cystic kidney epigenetic landscape resembles that of a developing kidney, and over 90% of upregulated genes in Pkd1-mutant kidneys are co-housed with activated enhancers in the same topologically associated domains. Furthermore, we identified an evolutionarily conserved enhancer cluster downstream of the c-Myc gene and super-enhancers flanking both Jun and Fos loci in mouse and human models of autosomal dominant PKD. Deleting these regulatory elements reduced c-Myc, Jun, or Fos abundance and suppressed proliferation and 3D cyst growth of Pkd1-mutant cells. Finally, inhibiting glycolysis and glutaminolysis or activating Ppara in Pkd1-mutant cells lowerd global H3K27ac levels and its abundance on c-Myc enhancers. Thus, our work suggests that epigenetic rewiring mediates the transcriptomic dysregulation in PKD, and the regulatory elements can be targeted to slow cyst growth.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Cistos/patologia , Histonas/metabolismo , Rim/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Transdução de Sinais
2.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182218

RESUMO

Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.


Assuntos
MicroRNAs/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia
3.
Biomolecules ; 9(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731771

RESUMO

Natural products from plants, such as chemopreventive agents, attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure-based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide-based therapeutics have been developed to combat several health disorders, including cancers, metabolic disorders, heart-related diseases, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, the in silico activities of cyclic peptides towards molecular targets, such as protein kinases, proteases, and apoptosis related proteins have not been extensively investigated. In this study, we explored the in silico kinase and protease inhibitor potentials of cyclosaplin, and studied the interactions of cyclosaplin with other apoptosis-related proteins. Previously, the structure of cyclosaplin was elucidated by molecular modeling associated with dynamics that were used in the current study as well. Docking studies showed strong affinity of cyclosaplin towards cancer-related proteins. The binding affinity closer to 10 kcal/mol indicated efficient binding. Cyclosaplin showed strong binding affinities towards protein kinases such as EGFR, VEGFR2, PKB, and p38, indicating its potential role in protein kinase inhibition. Moreover, it displayed strong binding affinity to apoptosis-related proteins and revealed the possible role of cyclosaplin in apoptotic cell death. The protein-ligand interactions using LigPlot displayed some similar interactions between cyclosaplin and peptide-based ligands, especially in case of protein kinases and a few apoptosis related proteins. Thus, the in silico analyses gave the insights of cyclosaplin being a potential apoptosis inducer and protein kinase inhibitor.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Santalum/química , Humanos , Simulação de Dinâmica Molecular
4.
Methods Cell Biol ; 154: 109-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31493813

RESUMO

Oligonucleotides are small molecules 8-50 nucleotides in length that bind via Watson-Crick base pairing to enhance or repress the expression of target RNA. The use of oligonucleotides to manipulate gene expression in the kidney could be a valuable tool to further understand kidney pathophysiology and can serve as an important complement to genetic studies. This chapter serves as a primer on the use of oligonucleotides in the kidney. We provide an overview of the various ways that oligonucleotides can manipulate gene expression. In addition, we describe the advancements in the development of oligonucleotides for laboratory and clinical use. Finally, instruction is provided on the design and implementation of oligonucleotides for in vitro and in vivo laboratory studies.


Assuntos
Terapia Genética/métodos , Rim/metabolismo , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Doenças Renais Policísticas/terapia , Canais de Cátion TRPP/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Rim/patologia , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Canais de Cátion TRPP/deficiência
5.
Am J Physiol Cell Physiol ; 317(2): C209-C225, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116585

RESUMO

We hypothesized that a functional apolipoprotein LI (APOL1)-miR193a axis (inverse relationship) preserves, but disruption alters, the podocyte molecular phenotype through the modulation of autophagy flux. Podocyte-expressing APOL1G0 (G0-podocytes) showed downregulation but podocyte-expressing APOL1G1 (G1-podocytes) and APOL1G2 (G2-podocytes) displayed enhanced miR193a expression. G0-, G1-, and G2-podocytes showed enhanced expression of light chain (LC) 3-II and beclin-1, but a disparate expression of p62 (low in wild-type but high in risk alleles). G0-podocytes showed enhanced, whereas G1- and G2-podocytes displayed decreased, phosphorylation of Unc-51-like autophagy-activating kinase (ULK)1 and class III phosphatidylinositol 3-kinase (PI3KC3). Podocytes overexpressing miR193a (miR193a-podocytes), G1, and G2 showed decreased transcription of PIK3R3 (PI3KC3's regulatory unit). Since 3-methyladenine (3-MA) enhanced miR193a expression but inhibited PIK3R3 transcription, it appears that 3-MA inhibits autophagy and induces podocyte dedifferentiation via miR193a generation. miR193a-, G1-, and G2-podocytes also showed decreased phosphorylation of mammalian target of rapamycin (mTOR) that could repress lysosome reformation. G1- and G2-podocytes showed enhanced expression of run domain beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon); however, its silencing prevented their dedifferentiation. Docking, protein-protein interaction, and immunoprecipitation studies with antiautophagy-related gene (ATG)14L, anti-UV radiation resistance-associated gene (UVRAG), or Rubicon antibodies suggested the formation of ATG14L complex I and UVRAG complex II in G0-podocytes and the formation of Rubicon complex III in G1- and G2-podocytes. These findings suggest that the APOL1 risk alleles favor podocyte dedifferentiation through blockade of multiple autophagy pathways.


Assuntos
Apolipoproteína L1/metabolismo , Autofagia , Desdiferenciação Celular , MicroRNAs/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína L1/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Transformada , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Simulação de Dinâmica Molecular , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
6.
Biomolecules ; 9(4)2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925799

RESUMO

Development of novel anti-cancer peptides requires a rapid screening process which can be accelerated by using appropriate in vitro tumor models. Breast carcinoma tissue is a three-dimensional (3D) microenvironment, which contains a hypoxic center surrounded by dense proliferative tissue. Biochemical clues provided by such a 3D cell mass cannot be recapitulated in conventional 2D culture systems. In this experiment, we evaluate the efficacy of the sandalwood peptide, cyclosaplin, on an established in vitro 3D silk breast cancer model using the invasive MDA-MB-231 cell line. The anti-proliferative effect of the peptide on the 3D silk tumor model is monitored by alamarBlue assay, with conventional 2D culture as control. The proliferation rate, glucose consumed, lactate dehydrogenase (LDH), and matrix metalloproteinase 9 (MMP-9) activity of human breast cancer cells are higher in 3D constructs compared to 2D. A higher concentration of drug is required to achieve 50% cell death in 3D culture than in 2D culture. The cyclosaplin treated MDA-MB-231 cells showed a significant decrease in MMP-9 activity in 3D constructs. Microscopic analysis revealed the formation of cell clusters evenly distributed in the scaffolds. The drug treated cells were less in number, smaller and showed unusual morphology. Overall, these findings indicate the role of cyclosaplin as a promising anti-cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Fibroínas/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroínas/química , Humanos , Mariposas/química , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
7.
Biosci Rep ; 38(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29572389

RESUMO

Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indicate cigarette smoking is an independent risk factor for chronic kidney disease including DN; however, the underlying molecular mechanisms are not clear. Recent studies have demonstrated that nicotine, one of the active compounds in cigarette smoke, contributes to the pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the characteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the present study, we examined the involvement of Wnt/ß-catenin pathway in nicotine-mediated mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by evaluation for cell growth. In the presence of normal glucose, nicotine increased both the total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation, nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased the expression of Wnts, ß-catenin, and fibronectin in normal glucose medium, but further increased mesangial cell expression of these proteins in high glucose milieu. Pharmacological inhibition or genetic knockdown of ß-catenin activity or expression with specific inhibitor FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and fibronectin production. We conclude that nicotine may enhance renal mesangial cell proliferation and fibronectin production under high glucose milieus partly through activating Wnt/ß-catenin pathway. Our study provides insight into molecular mechanisms involved in DN.


Assuntos
Nefropatias Diabéticas/genética , Fibronectinas/biossíntese , Nicotina/efeitos adversos , Insuficiência Renal Crônica/genética , beta Catenina/genética , Proliferação de Células/efeitos dos fármacos , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Fibronectinas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Células Mesangiais/efeitos dos fármacos , Nicotina/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Sulfonamidas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
8.
Am J Physiol Renal Physiol ; 314(5): F832-F843, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357419

RESUMO

The loss of podocyte (PD) molecular phenotype is an important feature of diabetic podocytopathy. We hypothesized that high glucose (HG) induces dedifferentiation in differentiated podocytes (DPDs) through alterations in the apolipoprotein (APO) L1-microRNA (miR) 193a axis. HG-induced DPD dedifferentiation manifested in the form of downregulation of Wilms' tumor 1 (WT1) and upregulation of paired box 2 (PAX2) expression. WT1-silenced DPDs displayed enhanced expression of PAX2. Immunoprecipitation of DPD cellular lysates with anti-WT1 antibody revealed formation of WT1 repressor complexes containing Polycomb group proteins, enhancer of zeste homolog 2, menin, and DNA methyltransferase (DNMT1), whereas silencing of either WT1 or DNMT1 disrupted this complex with enhanced expression of PAX2. HG-induced DPD dedifferentiation was associated with a higher expression of miR193a, whereas inhibition of miR193a prevented DPD dedifferentiation in HG milieu. HG downregulated DPD expression of APOL1. miR193a-overexpressing DPDs displayed downregulation of APOL1 and enhanced expression of dedifferentiating markers; conversely, silencing of miR193a enhanced the expression of APOL1 and preserved DPD phenotype. Moreover, stably APOL1G0-overexpressing DPDs displayed the enhanced expression of WT1 but attenuated expression of miR193a; nonetheless, silencing of APOL1 reversed these effects. Since silencing of APOL1 enhanced miR193a expression as well as dedifferentiation in DPDs, it appears that downregulation of APOL1 contributed to dedifferentiation of DPDs through enhanced miR193a expression in HG milieu. Vitamin D receptor agonist downregulated miR193a, upregulated APOL1 expression, and prevented dedifferentiation of DPDs in HG milieu. These findings suggest that modulation of the APOL1-miR193a axis carries a potential to preserve DPD molecular phenotype in HG milieu.


Assuntos
Apolipoproteína L1/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Glucose/toxicidade , MicroRNAs/metabolismo , Podócitos/efeitos dos fármacos , Apolipoproteína L1/genética , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Linhagem Celular Transformada , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas WT1/genética , Proteínas WT1/metabolismo
9.
Eur J Pharmacol ; 813: 33-41, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736282

RESUMO

Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100µM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies.


Assuntos
Aminoquinolinas/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Curcumina/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Psoríase/induzido quimicamente , Psoríase/patologia , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/metabolismo , Citocinas/química , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Proteínas Filagrinas , Humanos , Imiquimode , Simulação de Acoplamento Molecular , Conformação Proteica , Pele/efeitos dos fármacos
10.
Colloids Surf B Biointerfaces ; 155: 379-389, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456049

RESUMO

Research of improved functional bio-mimetic matrix for regenerative medicine is currently one of the rapidly growing fields in tissue engineering and medical sciences. This study reports a novel bio-polymeric matrix, which is fabricated using silk protein fibroin from Bombyx mori silkworm and fungal exopolysaccharide Thelebolan from Antarctic fungus Thelebolus sp. IITKGP-BT12 by solvent evaporation and freeze drying method. Natural cross linker genipin is used to imprison the Thelebolan within the fibroin network. Different cross-linked and non-cross-linked fibroin/Thelebolan matrices are fabricated and biophysically characterized. Cross-linked thin films show robustness, good mechanical strength and high temperature stability in comparison to non-cross-linked and pure matrices. The 3D sponge matrices demonstrate good cytocompatibility. Interestingly, sustained release of the Thelebolan from the cross-linked matrices induce apoptosis in colon cancer cell line (HT-29) in time dependent manner while it is nontoxic to the normal fibroblast cells (L929).The findings indicate that the cross-linked fibroin/Thelebolan matrices can be used as potential topical chemopreventive scaffold for preclusion of soft tissue carcinoma.


Assuntos
Fibroínas/metabolismo , Polissacarídeos Fúngicos/metabolismo , Proteínas de Insetos/metabolismo , Seda/metabolismo , Alicerces Teciduais , Animais , Apoptose/efeitos dos fármacos , Ascomicetos/química , Biopolímeros/química , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Bombyx/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Fibroínas/química , Polissacarídeos Fúngicos/química , Células HT29 , Humanos , Proteínas de Insetos/química , Camundongos , Microscopia Eletrônica de Varredura , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/prevenção & controle , Engenharia Tecidual/métodos
11.
Carbohydr Polym ; 104: 204-12, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24607179

RESUMO

The present investigation is on a newly isolated psychrophilic Antarctic filamentous Ascomycetous fungus that has been identified as Thelebolus sp. and given the designation of Thelebolus sp. IITKGP-BT12. The culture was primarily identified through morphological studies, and was further confirmed by 18S rRNA sequencing (GenBank Accession No. KC191572), which revealed its close relatedness with Thelebolus microsporus. The exopolysaccharide (EPS) produced (1.94 g L(-1)) by the fungus was isolated, purified and characterized as glucan having an average molecular mass of 5×10(5)Da. The structure of EPS was determined by gas chromatography with tandem mass spectrometry (GC-MS/MS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) studies ((1)H, (13)C and HSQC). NMR analysis indicated the presence of (1→3)-linked ß-d-glucan backbone with (1→6)-linked branches of ß-d-glucopyranosyl units. Antiproliferative activity of EPS was demonstrated in B16-F0 cells, with IC50 of 275.42 µg m L(-1). Flow cytometry analysis and DNA fragmentation studies revealed that the cytotoxic action of the EPS mediated apoptosis in cancer cells. This is the first ever report on bioactive EPS thelebolan from Thelebolus sp.


Assuntos
Ascomicetos/química , Polissacarídeos Fúngicos/química , Animais , Regiões Antárticas , Apoptose , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espaço Extracelular/química , Polissacarídeos Fúngicos/metabolismo , Polissacarídeos Fúngicos/farmacologia , Camundongos
12.
Peptides ; 54: 148-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24503375

RESUMO

Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 µg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Santalum/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/isolamento & purificação , Plântula/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA