Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37610543

RESUMO

This study investigated the effect of co-culturing the photobiont and mycobiont in the microbial fuel cell (MFC) cathode on biomass production, lipid generation, and power output. Chlorella vulgaris provides oxygen and nutrients for the yeast Cystobasidium oligophagum JRC1, while the latter offers CO2 and quench oxygen for higher algal growth. The MFC with co-culture enhanced the lipid output of biomass by 28.33%, and the total yield and productivity were 1.47 ± 0.18 g/l and 0.123 g/l/day, respectively. Moreover, with co-culture, the open circuit voltage of 685 ± 11 mV was two times higher than algae alone. The specific growth rate (day-1) at the cathode was 0.367 ± 0.04 in co-culture and 0.288 ± 0.05 with C. vulgaris only. The power density of the system was 5.37 ± 0.21 mW/m2 with 75.88 ± 1.89% of COD removal. The co-culture thus proved beneficial at the MFC cathode in terms of total energy output as 11.5 ± 0.035 kWh/m3, which was 1.4-fold higher than algae alone.

2.
Curr Alzheimer Res ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37282567

RESUMO

AIMS: Caffeine possesses potent antioxidant, anti-inflammatory and anti-apoptotic activities against a variety of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). The goal of this study was to investigate the protective role of a psychoactive substance like caffeine on hippocampal neurogenesis and memory functions in streptozotocin (STZ)-induced neurodegeneration in rats. BACKGROUND: Caffeine is a natural CNS stimulant, belonging to the methylxanthine class, and is a widely consumed psychoactive substance. It is reported to abate the risk of various abnormalities that are cardiovascular system (CVS) related, cancer related, or due to metabolism dysregulation. Short-term caffeine exposure has been widely evaluated, but its chronic exposure is less explored and pursued. Several studies suggest a devastating role of caffeine in neurodegenerative disorders. However, the protective role of caffeine on neurodegeneration is still unclear. OBJECTIVE: Here, we examined the effects of chronic caffeine administration on hippocampal neurogenesis in intracerebroventricular STZ injection induced memory dysfunction in rats. The chronic effect of caffeine on proliferation and neuronal fate determination of hippocampal neurons was evaluated by co-labeling of neurons by thymidine analogue BrdU that labels new born cells, DCX (a marker for immature neurons) and NeuN that labels mature neurons. METHOD: STZ (1 mg/kg, 2 µl) was injected stereotaxically into the lateral ventricles (intracerebroventricular injection) once on day 1, followed by chronic treatment with caffeine (10 mg/kg, i.p) and donepezil (5 mg/kg, i.p.). Protective effect of caffeine on cognitive impairment and adult hippocampal neurogenesis was evaluated. RESULT: Our findings show decreased oxidative stress burden and amyloid burden following caffeine administration in STZ lesioned SD rats. Further, double immunolabeling with bromodeoxyuridine+/doublecortin+ (BrdU+/DCX+) and bromodeoxyuridine+/ neuronal nuclei+ (BrdU+/NeuN+) has indicated that caffeine improved neuronal stem cell proliferation and long term survival in STZ lesioned rats. CONCLUSION: Our findings support the neurogenic potential of caffeine in STZ induced neurodegeneration.

3.
Neuron ; 111(6): 807-823.e7, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626901

RESUMO

Previously, we demonstrated the efficacy of human pluripotent stem cell (hPSC)-derived GABAergic cortical interneuron (cIN) grafts in ameliorating seizures. However, a safe and reliable clinical translation requires a mechanistic understanding of graft function, as well as the assurance of long-term efficacy and safety. By employing hPSC-derived chemically matured migratory cINs in two models of epilepsy, we demonstrate lasting efficacy in treating seizures and comorbid deficits, as well as safety without uncontrolled growth. Host inhibition does not increase with increasing grafted cIN densities, assuring their safety without the risk of over-inhibition. Furthermore, their closed-loop optogenetic activation aborted seizure activity, revealing mechanisms of graft-mediated seizure control and allowing graft modulation for optimal translation. Monosynaptic tracing shows their extensive and specific synaptic connections with host neurons, resembling developmental connection specificity. These results offer confidence in stem cell-based therapy for epilepsy as a safe and reliable treatment for patients suffering from intractable epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes , Humanos , Convulsões/terapia , Epilepsia/terapia , Interneurônios/fisiologia , Neurônios
4.
ACS Chem Neurosci ; 13(10): 1491-1504, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533351

RESUMO

Hypertension is reported to cause major brain disorders including Parkinson's disease (PD), apart from cardiovascular and chronic kidney disorders. Considering this, for the first time, we explored the effect of modulation of the ACE2/Ang (1-7)/MasR axis using diminazene aceturate (DIZE), an ACE2 activator, in 6-hydroxydopamine (6-OHDA) induced PD model. We found that DIZE treatment improved neuromuscular coordination and locomotor deficits in the 6-OHDA induced PD rat model. Further, the DIZE-mediated activation of ACE2 led to increased tyrosine hydroxylase (TH) and dopamine transporters (DAT) expression in the rat brain, indicating the protection of dopaminergic (DAergic) neurons from 6-OHDA induced neurotoxicity. Moreover, 6-OHDA induced activation of glial cells (astrocytes and microglia) and release of neuroinflammatory mediators were attenuated by DIZE treatment in both in vitro as well as in vivo models of PD. DIZE exerted its effect by activating ACE2 that produced Ang (1-7), a neuroprotective peptide. Ang (1-7) conferred its neuroprotective effect upon binding with the G-protein-coupled MAS receptor that led to the upregulation of cell survival proteins while downregulating apoptotic proteins. Importantly, these findings were further validated by using A-779, a MasR antagonist. The result showed that treatment with A-779 reversed the antioxidative and anti-inflammatory effects of DIZE by decreasing glial activation and neuroinflammatory markers. Although the role of ACE2 in PD pathology needs to be additionally confirmed using transgenic models in either ACE2 overexpressing or knockout mice, still, our study demonstrates that enhancing ACE2 activity could be a novel approach for ameliorating PD pathology.


Assuntos
Enzima de Conversão de Angiotensina 2 , Diminazena/análogos & derivados , Doença de Parkinson , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Diminazena/farmacologia , Camundongos , Modelos Teóricos , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/enzimologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Breast Cancer (Auckl) ; 14: 1178223420934447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612361

RESUMO

BACKGROUND: Triple-negative breast cancer is an aggressive type of breast cancer with high risk of recurrence. It is still poorly understood and lacks any targeted therapy, which makes it difficult to treat. Thus, it is important to understand the underlying mechanisms and pathways that are dysregulated in triple-negative breast cancer. METHODS: To investigate the role of mitochondria in triple-negative breast cancer progression, we analysed previously reported gene expression data from triple-negative breast cancer cybrids with SUM-159 as the nuclear donor cell and SUM-159 or A1N4 (c-SUM-159, c-A1N4) as the mitochondrial donor cells and with 143B as the nuclear donor cell and MCF-10A or MDA-MB-231 (c-MCF-10A, c-MDA-MB-231) as the mitochondrial donor cells. The role of potential biomarkers in cell proliferation and migration was examined in SUM-159 and MDA-MB-231 cells using sulforhodamine B and wound healing assays. RESULTS: Rank product analysis of cybrid gene expression data identified 149 genes which were significantly up-regulated in the cybrids with mitochondria from the cancer cell line. Analysis of previously reported breast tumour gene expression datasets confirmed 9 of the 149 genes were amplified, up-regulated, or down-regulated in more than 10% of the patients. The genes included NDRG1, PVT1, and EXT1, which are co-located in cytoband 8q24, which is frequently amplified in breast cancer. NDRG1 showed the largest down-regulation in the cybrids with benign mitochondria and was associated with poor prognosis in a breast cancer clinical dataset. Knockdown of NDRG1 expression significantly decreased proliferation of SUM-159 triple-negative breast cancer cells. CONCLUSIONS: These results indicate that mitochondria-regulated nuclear gene expression helps breast cancer cells survive and proliferate, consistent with previous work focusing on an Src gene signature which is mitochondria regulated and drives malignancy in breast cancer cybrids. This is the first study to show that mitochondria in triple-negative breast cancer mediate significant up-regulation of a number of genes, and silencing of NDRG1 leads to significant reduction in proliferation.

6.
Mini Rev Med Chem ; 20(13): 1311-1317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368977

RESUMO

BACKGROUND: Being derived from primary amine and aromatic aldehyde, Schiff base and their complexes have an imperative role in the improvement of inorganic chemistry, which are broadly studied as coordination compounds and are gradually becoming more important in biochemical and analytical applications. METHODS: They have also been used for antibacterial, antifungal, anticancer, antitubercular activities. Novel synthesised Schiff's base 2-methoxy-4-((3-methylpyridin-2-ylimino)methyl)phenol (SB) and its metal complexes (Zn[II], Cu[II], Co[II] and Ni[II]) were characterised by UV, IR and NMR spectroscopy. Formation of the Schiff base and the metal (Zn[II], Cu[II], Co[II] and Ni[II]) chelates was supported by spectral and analytical data. The ligand and metal complexes have been screened for their antibacterial activity against Staphylococcus aureus, Salmonella typhi, Escherichia coli, Klebsiella pneumoniae and antifungal activity against the fungi Candida albicans and Aspergillus niger. Further, the synthesised compounds were also screened for antiproliferative activity against the human colorectal carcinoma (HCT116) cell line using the Sulforhodamine B assay. RESULT: Metal complexes formed were found to enhance the potency of the Schiff base due to coordination with a copper complex, showing better activity than others. CONCLUSION: Copper complex was observed to be more potent than other complexes against all the pathogenic microbes and cancer cell line (HCT116).


Assuntos
Anti-Infecciosos/síntese química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Fenóis/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzaldeídos/química , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Desenho de Fármacos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Níquel/química , Bases de Schiff/química , Relação Estrutura-Atividade , Zinco/química
7.
J Exp Neurosci ; 12: 1179069518779829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899667

RESUMO

Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein-coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson's disease (PD), Alzheimer's disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.

8.
Mol Neurobiol ; 55(1): 583-602, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27975173

RESUMO

Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in neurodegenerative diseases.


Assuntos
Acetilcarnitina/uso terapêutico , Memória , Microglia/patologia , Neurônios/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Receptores de Dopamina D1/metabolismo , Regulação para Cima , Acetilcarnitina/administração & dosagem , Acetilcarnitina/farmacologia , Animais , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Gliose/patologia , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Memória/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina , Doença de Parkinson/patologia , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
9.
Neurochem Res ; 42(12): 3414-3430, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28836128

RESUMO

Purinoceptors are present in neurons, microglia and oligodendrocytes and regulate dopamine (DA) release, striatal-related function and striatal neuronal and DA cells damage. Therefore, purinoceptors may be involved in the pathology of Parkinson's disease (PD) and purinergic antagonism may show neuroprotective effect. The study investigated the role of the non-selective purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS) and a selective purinergic receptor P2X7 receptor antagonist Brilliant Blue G (BBG) against 6-OHDA induced dopaminergic neurotoxicity in rats; while adenosine triphosphate (ATP) was used as a P2X receptor agonist. Behavioral parameters like spontaneous motor activity, narrow beam walk, footprint, bar catalepsy, grip strength and rotarod tests were performed to evaluate motor deficits in PD. Striatal DA contents were estimated as neurochemical measures of PD. Mitochondrial studies and oxidative status were assessed to investigate the mechanism of purinergic system antagonists. Involvement of purinergic receptors in apoptosis was assessed by expressing cytochrome-C, caspase-9 and caspase-3. Both the antagonists not only attenuated 6-OHDA induced motor deficits but also protected against 6-OHDA induced DA depletion in the striatum. Oxidative stress, mitochondrial integrity and dysfunction were attenuated by purinergic antagonists. Further, they attenuated mitochondrial-linked apoptosis as observed by a decrease in expression of cytochrome-C, caspase-9 and caspase-3. Therefore, purinoceptor antagonism shows neuroprotective effect in 6-OHDA induced dopamine toxicity through preservation of mitochondrial bioenergetics and anti-apoptotic activities.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxidopamina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA