Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958457

RESUMO

Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause 5-10% acute leukemias with poor clinical outcomes. Protein-protein interactions (PPI) between the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several benzothiophene-carboxamide compounds were identified as novel inhibitors of these PPIs with IC50 values as low as 1.6 µM. Structure-activity relationship studies of 77 benzothiophene and related indole and benzofuran compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl substituent is essential for the activity. The inhibitors suppressed expression of MLL target genes HoxA9, Meis1 and Myc, and selectively inhibited proliferation of MLL-r and other acute myeloid leukemia cells with EC50 values as low as 4.7 µM. These inhibitors are useful chemical probes for biological studies of AF9/ENL, as well as pharmacological leads for further drug development against MLL-r and other leukemias.

2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769090

RESUMO

GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Sítios de Ligação , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/enzimologia , Proteínas Tirosina Quinases/metabolismo
3.
J Enzyme Inhib Med Chem ; 36(1): 954-963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33947294

RESUMO

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Animais , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Oxid Med Cell Longev ; 2021: 8839479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747350

RESUMO

Black berry (Syzygium cumini) fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by S. cumini methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-κB, TNF-α, and IL-6 were also examined. Identification and estimation of polyphenol constituents present in S. cumini extract were carried out using reverse-phase HPLC. Further, in silico docking studies of identified polyphenols with gelatinase-B were performed to elucidate molecular level interaction in the active site of gelatinase-B. Docking studies showed strong interaction of S. cumini polyphenols with gelatinase-B. Our findings indicate that MSE significantly suppresses gelatinase-B expression and activity in high-glucose- (HG-) stimulated cardiomyopathy. Further, HG-induced activation of NF-κB, TNF-α, and IL-6 was also remarkably reduced by MSE. Our results suggest that S. cumini MSE may be useful as an effective functional food and dietary supplement to regulate HG-induced cardiac stress through gelatinase.


Assuntos
Anti-Inflamatórios/farmacologia , Hiperglicemia/patologia , Metaloproteinase 9 da Matriz/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Sementes/química , Syzygium/química , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose , Hiperglicemia/genética , Inflamação/patologia , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Especificidade por Substrato/efeitos dos fármacos , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
5.
Brief Bioinform ; 22(2): 1346-1360, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33386025

RESUMO

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Catequina/química , Catequina/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polifenóis/uso terapêutico
6.
Mol Ther Oncolytics ; 19: 105-126, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33102693

RESUMO

TRIP-Brs, a group of transcription factors (TFs) that modulate several mechanisms in higher organisms. However, the novel paradigm to target TRIP-Brs in specific cancer remains to be deciphered. In particular, comprehensive analysis of TRIP-Brs in clinicopathological and patients' prognosis, especially in breast cancer (BRCA), is being greatly ignored. Therefore, we explored the key roles of TRIP-Br expression, modulatory effects, mutations, immune infiltration, and prognosis in BRCA using multidimensional approaches. We found elevated levels of TRIP-Brs in numerous cancer tissues than normal. Higher expression of TRIP-Br-2/4/5 was shown to be positively associated with lower survival, tumor grade, and malignancy of patients with BRCA. Additionally, higher TRIP-Br-3/4 were also significantly linked with worse/short survival of BRCA patients. TRIP-Br-1/4/5 were significantly overexpressed and enhanced tumorigenesis in large-scale BRCA datasets. The mRNA levels of TRIP-Brs have been also correlated with tumor immune infiltrate in BRCA patients. In addition, TRIP-Brs synergistically play a pivotal role in central carbon metabolism, cancer-associated pathways, cell cycle, and thyroid hormone signaling, which evoke that TRIP-Brs may be a potential target for the therapy of BRCA. Thus, this investigation may lay a foundation for further research on TRIP-Br-mediated management of BRCA.

7.
Cancers (Basel) ; 11(9)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450709

RESUMO

Lung cancer is a type of deadly cancer and a leading cause of cancer associated death worldwide. BCL-2 protein is considered as an imperative target for the treatment of cancer due to their significant involvement in cell survival and death. A carbazole-piperazine hybrid molecule ECPU-0001 was designed and synthesized as a potent BCL-2 targeting agent with effective anticancer cancer activity. Interaction of ECPU-001 has been assessed by docking, molecular dynamics (MD) simulation, and thermal shift assay. Further, in vitro and in vivo anticancer activity was executed by cytotoxicity assay, FACS, colony formation and migration assay, western blotting, immunocyto/histochemistry and xenograft nude mice model. Molecular docking and MD simulation study confirmed that ECPU-0001 nicely interacts with the active site of BCL-2 by displaying a Ki value of 5.72 µM and binding energy (ΔG) of -8.35 kcal/mol. Thermal shift assay also validated strong interaction of this compound with BCL-2. ECPU-0001 effectively exerted a cytotoxic effect against lung adenocarnoma cells A459 with an IC50 value of 1.779 µM. Molecular mechanism of action have also been investigated and found that ECPU-0001 induced apoptosis in A459 cell by targeting BCL-2 to induce intrinsic pathway of apoptosis. Administration of ECPU-0001 significantly inhibited progression of tumor in a xenograft model without exerting severe toxicity and remarkably reduced tumor volume as well as tumor burden in treated animals. Our investigation bestowed ECPU-0001 as an effective tumoricidal agent which exhibited impressive anticancer activity in vitro as well as in vivo by targeting BCL-2 associated intrinsic pathway of apoptosis. Thus, ECPU-0001 may provide a valuable input for therapy of lung adenosarcoma in future, however, further extensive investigation of this compound will be needed.

8.
Cancers (Basel) ; 11(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857225

RESUMO

SERTAD/TRIP-Br genes are considered as a key nuclear transcriptional player in diverse mechanisms of cell including carcinogenesis. The Oncomine™-Online Platform was used for differential expression and biological insights. Kaplan-Meier survival estimated by KM-plotter/cBioPortal/PrognoScan with 95% CI. SERTAD1 was found significantly elevated levels in most of tumor samples. Kaplan-Meier Plotter results distinctly showed the SERTAD1 over-expression significantly reduced median overall-survival (OS) of patients in liver (n = 364/Logrank-test p = 0.0015), ovarian (n = 655/Logrank-test p = 0.00011) and gastric (n = 631/Logrank-test p = 0.1866). Increased level of SERTAD1 has a significantly higher survival rate in the initial time period, but after 100 months slightly reduced OS (n = 26/Logrank-test p = 0.34) and RFS in HER2 positive breast cancer patients. In meta-analysis, cancer patients with higher SERTAD1 mRNA fold resulted worse overall survival than those with lower SERTAD1 levels. Heterogeneity was observed in the fixed effect model analysis DFS [Tau² = 0.0.073, Q (df = 4) = 15.536 (p = 0.004), I² = 74.253], DSS [Tau² = 1.015, Q (df = 2) = 33.214, (p = 0.000), I² = 93.973], RFS [Tau² = 0.492, Q (df = 7) = 71.133 (p = 0.000), I² = 90.159] (Figure 5). OS [Tau² = 0.480, Q (df = 17) = 222.344 (p = 0.000), I² = 92.354]. Lastly, SERTAD1 involved in several signaling cascades through interaction and correlation with many candidate factors as well as miRNAs. This meta-analysis demonstrates a robust evidence of an association between higher or lower SERTAD1, alteration and without alteration of SERTAD1 in cancers in terms of survival and cancer invasiveness.

9.
Biomed Pharmacother ; 105: 470-480, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29883942

RESUMO

Epilepsy is a chronic neurological disorder which affects 65 million worldwide population and characterized by recurrent seizure in epileptic patients. Recently, we reported a novel piperonylpiperazine derivative, BPPU "1-[4-(4-benzo [1,3]dioxol-5-ylmethyl-piperazin-1-yl)- phenyl]-3-phenyl-urea'' as a potent anticonvulsant agent. BPPU has shown excellent anticonvulsant activity in various in-vivo seizure models along with good anti-depressant activity. In this report, we have deeply examined the anti-epileptogenic potential of BPPU in pentylenetetrazole (PTZ) induced kindling model and BPPU effectively reduced seizure episodes in kindled animals upto 35 days. Further, neuroprotective potential of BPPU against PTZ induced neurodegeneration has also been evaluated in hippocampus as well as cortex region by histopathological and immunohistochemical studies. Epileptic patients generally suffer from a range of cognitive impairments. Therefore, the cognition enhancing effect of BPPU was also measured by using well known social recognition test, novel object recognition test, light/dark test and open field test in kindled rat model as well as scopolamine induced memory deficit mice model. Results indicated that BPPU successfully improved cognition deficits in both models. Thus, BPPU appeared as a potent anti-epileptic agent which has also capability to improve cognition decline associated with epilepsy.


Assuntos
Cognição , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Piperazinas/uso terapêutico , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Doença Crônica , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Epilepsia/patologia , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos , Pentilenotetrazol , Piperazina , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Escopolamina
10.
ACS Chem Biol ; 12(3): 753-768, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28084722

RESUMO

Mitochondria impart a crucial role in the regulation of programmed cell death and reactive oxygen species (ROS) generation, besides serving as a primary energy source. Mitochondria appeared as an important target for the therapy of cancer due to their significant contribution to cell survival and death. Here, we report the design and synthesis of a novel series of triazole-piperazine hybrids as potent anticancer agents. MCS-5 emerged as an excellent anticancer agent which showed better anticancer activity than the standard drug doxorubicin in in vitro and in vivo studies. MCS-5 displayed an IC50 value of 1.92 µM and induced apoptosis in Cal72 (human osteosarcoma cell line) cells by targeting the mitochondrial pathway. This compound arrested the G2/M phase of the cell cycle and induced ROS production and mitochondrial potential collapse in Cal72 cells. MCS-5 displayed excellent anticancer activity in the Cal72 xenograft nude mice model, where it significantly reduced tumor progression, leading to enhanced life span in treated animals compared to control and doxorubicin treated animals without exerting noticeable toxicity. In addition, a 2DG optical probe guided study clearly evoked that MCS-5 remarkably reduced tumor metastasis in the Cal72 xenograft nude mice model. These results indicate that MCS-5 appeared as a novel chemical entity which is endowed with excellent in vitro as well as in vivo anticancer activity and may contribute significantly to the management of cancer in the future.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/patologia , Piperazinas/química , Piperazinas/farmacologia , Triazóis/química , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Curr Pharm Des ; 22(21): 3212-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26916017

RESUMO

Epilepsy is a complex neurological disorder which has plagued the human population through the ages and continues to affect about 50 million people worldwide. A better understanding of the pathogenesis of epilepsy unmasks various molecular targets for the treatment of epilepsy. The currently used antiepileptic drugs (AEDs) predominately target voltage-gated ion channels (Na+, Ca2+ and K+), GABAA receptor, glutamate receptor, synaptic vesicle 2A (SV2A) protein and carbonic anhydrase (CA). One group of AEDs acts on a single target while another group acts via multiple targets to control seizure episodes. AEDs which act via multiple mechanisms or polypharmacological mechanisms of action have appeared as broad spectrum anticonvulsant agent and therefore, they provide a better choice to clinicians to manage drug-resistant epilepsies and various other epileptic syndromes. For example, polypharmacological AEDs such as PB, VPA, OXC, FBM etc. are vital for managing epilepsy successfully, since decades. In literature there is no review available which exclusively highlights the polypharmacological mechanisms of action of existing AEDs as well as new emerging molecules. This review covers running marketed AEDs, clinical trial drugs as well as potent preclinical molecules which displayed anti-epileptic activity via multiple mechanisms of action and this appraisal will surely provide a base for discovering potent multi-targeted AEDs.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Polifarmacologia , Animais , Anticonvulsivantes/química , Humanos , Estrutura Molecular
12.
J Mol Graph Model ; 64: 101-109, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826799

RESUMO

Carbonic anhydrase IX (CAIX) is a promising target in cancer therapy especially in the case of hypoxia-induced tumors. The selective inhibition of CA isozymes is a challenging task in drug design and discovery process. Here, we performed fluorescence-binding studies and inhibition assay combined with molecular docking and molecular dynamics (MD) simulation analyses to determine the binding affinity of two synthesized triazolo-pyrimidine urea derived (TPUI and TPUII) compounds with CAIX and CAII. Fluorescence binding results are showing that molecule TPUI has an excellent binding-affinity for CAIX (kD=0.048µM). The TPUII also exhibits an appreciable binding affinity (kD=7.52µM) for CAIX. TPUI selectively inhibits CAIX as compared to TPUII in the 4-NPA assay. Docking studies show that TPUI is spatially well-fitted in the active site cavity of CAIX, and is involve in H-bond interactions with His94, His96, His119, Thr199 and Thr200. MD simulation studies revealed that TPUI efficiently binds to CAIX and essential active site residual interaction is consistent during the entire simulation of 40ns. These studies suggest that TPUI appeared as novel class of CAIX inhibitor, and may be used as a lead molecule for the development of potent and selective CAIX inhibitor for the hypoxia-induced cancer therapy.


Assuntos
Inibidores da Anidrase Carbônica/química , Desenho de Fármacos , Modelos Moleculares , Pirimidinas/química , Triazóis/química , Ureia/química , Sítios de Ligação , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/química , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Fluorescência , Ureia/síntese química
13.
Neurosci Lett ; 558: 203-7, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24161891

RESUMO

Antagonism of the human A2A receptor has been implicated to alleviate the symptoms associated with Parkinson's disease. The present finding reveals the potential of PTTP (8-(furan-2-yl)-3-phenethylthiazolo[1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione) as novel and potent A2AR antagonist. In radioligand binding assay, PTTP showed significantly high binding affinity (Ki 6.3 nM) and selectivity with A2AR (A1R/A2AR=4603) which was comparable to the results of docking analysis (Ki=1.6 nM, ΔG=-14.52 Kcal/mol). PTTP antagonized (0.46 pmol/ml) the effect of NECA-induced increase in cAMP concentration (0.65 pmol/ml) better than SCH58261 (0.55 pmol/ml) in HEK293T cells. Haloperidol and NECA-induced mice pre-treated with PTTP at 10mg/kg showed attenuation in catalepsy and akinesia without significant neurotoxicity in rotarod test at 20mg/kg. Essentially, novel compound demonstrated remarkable potential as A2AR antagonist in the therapy of PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Pirimidinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Triazóis/farmacologia , Animais , Catalepsia/induzido quimicamente , Catalepsia/psicologia , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Atividade Motora/efeitos dos fármacos , Ensaio Radioligante , Teste de Desempenho do Rota-Rod
14.
Bioorg Med Chem ; 21(19): 6077-83, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953686

RESUMO

Novel 2-thioxothiazole derivatives (6-19) as potential adenosine A2A receptor (A2AR) antagonists were synthesized. The strong interaction of the compounds (6-19) with A2AR in docking study was confirmed by high binding affinity with human A2AR expressed in HEK293T cells using radioligand-binding assay. The compound 19 demonstrated very high selectivity for A2AR as compared to standard A2AR antagonist SCH58261. Decrease in A2AR-coupled release of endogenous cAMP in treated HEK293T cells demonstrated in vitro A2AR antagonist potential of the compound 19. Attenuation in haloperidol-induced impairment (catalepsy) in Swiss albino male mice pre-treated with compound 19 is evocative to explore its prospective in therapy of PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Desenho de Fármacos , Receptor A2A de Adenosina , Tiazóis/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Biológicos , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Receptor A2A de Adenosina/química , Tiazóis/química , Tiazóis/farmacologia , Triazóis/química , Triazóis/farmacologia
15.
Neurosci Lett ; 488(1): 1-5, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20708066

RESUMO

Adenosine A(2A) receptor (A(2A)R) antagonists have emerged as potential drug candidates to alleviate progression and symptoms of Parkinson's disease (PD), and reduce the dopaminergic side effects. The synthesis of novel compound 8-(furan-2-yl)-3-benzyl thiazolo [5,4-e][1,2,4] triazolo [1,5-c] pyrimidine-2-(3H)-thione (BTTP) was carried out to evaluate the potential of BTTP as A(2A)R antagonist using SCH58261, a standard A(2A)R antagonist. The strong interaction of BTTP with A(2A)R (ΔG=-12.46kcal/mol and K(i)=0.6nM) in silico analysis was confirmed by radioligand receptor binding studies showing high affinity (K(i)=0.004nM) and selectivity with A(2A)R (A(2A)/A(1)=1155-fold). The effect of CGS21680 (selective A(2A)R agonist) induced cAMP concentration (0.1pmol/ml) in HEK293 cells was antagonized with BTTP (0.065pmol/ml) and SCH58261 (0.075pmol/ml). Furthermore, BTTP pre-treated (5, 10 and 20mg/kg) haloperidol-induced mice demonstrated significant attenuation in catalepsy and akinesia. BTTP induced elevation in the striatal dopamine concentration (2.90µM/mg of tissue) was comparable to SCH58261 (2.92µM/mg of tissue) at the dose of 10mg/kg. The results firmly articulate that BTTP possesses potential A(2A)R antagonist activity and can be further explored for the treatment of PD.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Pirimidinas/farmacologia , Receptores A2 de Adenosina/metabolismo , Triazóis/farmacologia , Acridinas/farmacocinética , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Linhagem Celular Transformada , Cloroquinolinóis/farmacologia , Corpo Estriado/efeitos dos fármacos , AMP Cíclico/metabolismo , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Fenetilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Pirimidinas/química , Fatores de Tempo , Triazóis/química , Trítio/farmacocinética
16.
Bioorg Med Chem ; 18(7): 2491-500, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20303771

RESUMO

Novel thiazolotriazolopyrimidine derivatives (23-33) designed as potential adenosine A(2A) receptor (A(2A)R) antagonists were synthesized. Molecular docking studies revealed that all compounds (23-33) exhibited strong interaction with A(2A)R. The strong interaction of the compounds (23-33) with A(2A)R in silico was confirmed by their high binding affinity with human A(2A)R stably expressed in HEK293 cells using radioligand-binding assay. The compounds 24-26 demonstrated substantial binding affinity and selectivity for A(2A)R as compared to SCH58261, a standard A(2A)R antagonist. Decrease in A(2A)R-coupled release of endogenous cAMP in treated HEK293 cells demonstrated in vitro A(2A)R antagonist potential of the compounds 24-26. Attenuation in haloperidol-induced motor impairments (catalepsy and akinesia) in Swiss albino male mice pre-treated with compounds 24-26 further supports their role in the alleviation of PD symptoms.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Pirimidinas/síntese química , Pirimidinas/farmacologia , Tionas/síntese química , Tionas/farmacologia , Animais , Antipsicóticos/antagonistas & inibidores , Antipsicóticos/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/prevenção & controle , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatografia em Camada Fina , Simulação por Computador , Cristalografia por Raios X , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Discinesia Induzida por Medicamentos/prevenção & controle , Haloperidol/antagonistas & inibidores , Haloperidol/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 20(3): 1214-8, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20018509

RESUMO

Novel bicyclic thiazolopyrimidine compounds (15-26) were synthesized to develop adenosine A(2A) receptor (A(2A)R) antagonist for the treatment of Parkinson's disease (PD). The binding affinity of the compounds (15-26) with A(2A)R was evaluated using radioligand binding assay on isolated membranes from stably transfected HEK293 cells. Selectivity of the compounds towards A(2A)R was assessed by comparing their binding affinities with A(1) receptors (A(1)R). cAMP concentrations were measured from HEK293 cells treated with compounds (15-26) as compared to NECA (A(2A)R agonist). The compound (16) possessed strongest A(2A)R binding affinity (K(i) value=0.0038 nM) and selectivity (737-fold) versus A(1)R. Decrease in A(2A)R-coupled release of endogenous cAMP from HEK293 cells treated with compounds (15-26) is evocative of their potential as A(2A)R antagonist.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Pirimidinas/síntese química , Pirimidinas/metabolismo , Receptor A2A de Adenosina/metabolismo , Tiazóis/síntese química , Tiazóis/metabolismo , Linhagem Celular , Humanos , Ligação Proteica , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tiazóis/farmacologia
18.
Neurosci Lett ; 463(3): 215-8, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19654038

RESUMO

Loss of dopaminergic nigrostriatal neurons in the substantia nigra leads to Parkinson's disease (PD). Adenosine A(2A) receptors (A(2A)Rs) have been anticipated as novel therapeutic target for PD. A(2A)Rs potentiate locomotor behavior and are predominantly expressed in striatum. Naphtha [1, 2-d] thiazol-2-amine (NATA), a tricyclic thiazole have been studied as new anti-Parkinsonian compound. AutoDock analysis and pharmacophore study of NATA with known A(2A)R antagonists explicit its efficacy as a possible adenosine receptor antagonist. In vivo pharmacology of NATA showed reduction of haloperidol (HAL)-induced motor impairments in Swiss albino male mice. Relatively elevated levels of dopamine in NATA pre-treated mice are suggestive of its possible role as neuromodulator in PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Haloperidol , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/prevenção & controle , Naftalenos/química , Naftalenos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Masculino , Camundongos , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/fisiopatologia , Receptor A2A de Adenosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA