Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Psychiatry ; 15: 1345159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726387

RESUMO

Background: Studies have shown that cardiovascular health (CVH) is related to depression. We aimed to identify gene networks jointly associated with depressive symptoms and cardiovascular health metrics using the whole blood transcriptome. Materials and methods: We analyzed human blood transcriptomic data to identify gene co-expression networks, termed gene modules, shared by Beck's depression inventory (BDI-II) scores and cardiovascular health (CVH) metrics as markers of depression and cardiovascular health, respectively. The BDI-II scores were derived from Beck's Depression Inventory, a 21-item self-report inventory that measures the characteristics and symptoms of depression. CVH metrics were defined according to the American Heart Association criteria using seven indices: smoking, diet, physical activity, body mass index (BMI), blood pressure, total cholesterol, and fasting glucose. Joint association of the modules, identified with weighted co-expression analysis, as well as the member genes of the modules with the markers of depression and CVH were tested with multivariate analysis of variance (MANOVA). Results: We identified a gene module with 256 genes that were significantly correlated with both the BDI-II score and CVH metrics. Based on the MANOVA test results adjusted for age and sex, the module was associated with both depression and CVH markers. The three most significant member genes in the module were YOD1, RBX1, and LEPR. Genes in the module were enriched with biological pathways involved in brain diseases such as Alzheimer's, Parkinson's, and Huntington's. Conclusions: The identified gene module and its members can provide new joint biomarkers for depression and CVH.

2.
Front Cardiovasc Med ; 10: 1125151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435051

RESUMO

Background: Different observations have suggested that patients with depression have a higher risk for a number of comorbidities and mortality. The underlying causes have not been fully understood yet. Aims: The aim of our study was to investigate the association of a genetic depression risk score (GDRS) with mortality [all-cause and cardiovascular (CV)] and markers of depression (including intake of antidepressants and a history of depression) in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study involving 3,316 patients who had been referred for coronary angiography. Methods and results: The GDRS was calculated in 3,061 LURIC participants according to a previously published method and was found to be associated with all-cause (p = 0.016) and CV mortality (p = 0.0023). In Cox regression models adjusted for age, sex, body mass index, LDL-cholesterol, HDL-cholesterol, triglycerides, hypertension, smoking, and diabetes mellitus, the GDRS remained significantly associated with all-cause [1.18 (1.04-1.34, p = 0.013)] and CV [1.31 (1.11-1.55, p = 0.001)] mortality. The GDRS was not associated with the intake of antidepressants or a history of depression. However, this cohort of CV patients had not specifically been assessed for depression, leading to marked underreporting. We were unable to identify any specific biomarkers correlated with the GDRS in LURIC participants. Conclusion: A genetic predisposition for depression estimated by a GDRS was independently associated with all-cause and CV mortality in our cohort of patients who had been referred for coronary angiography. No biomarker correlating with the GDRS could be identified.

3.
Epigenetics ; 18(1): 2211361, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233989

RESUMO

BACKGROUND: Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS: We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS: In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS: We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response.


Assuntos
Ácido Ascórbico , Metilação de DNA , Humanos , Epigenoma , Vitaminas/farmacologia , Vitamina E , Estudo de Associação Genômica Ampla/métodos , Ilhas de CpG , Epigênese Genética
4.
OMICS ; 27(5): 193-204, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145884

RESUMO

Advanced integrative analysis of DNA methylation and transcriptomics data may provide deeper insights into smoke-induced epigenetic alterations, their effects on gene expression and related biological processes, linking cigarette smoking and related diseases. We hypothesize that accumulation of DNA methylation changes in CpG sites across genomic locations of different genes might have biological significance. We tested the hypothesis by performing gene set based integrative analysis of blood DNA methylation and transcriptomics data to identify potential transcriptomic consequences of smoking via changes in DNA methylation in the Young Finns Study (YFS) participants (n = 1114, aged 34-49 years, women: 54%, men: 46%). First, we performed epigenome-wide association study (EWAS) of smoking. We then defined sets of genes based on DNA methylation status within their genomic regions, for example, sets of genes containing hyper- or hypomethylated CpG sites in their body or promoter regions. Gene set analysis was performed using transcriptomics data from the same participants. Two sets of genes, one containing 49 genes with hypomethylated CpG sites in their body region and the other containing 33 genes with hypomethylated CpG sites in their promoter region, were differentially expressed among the smokers. Genes in the two gene sets are involved in bone formation, metal ion transport, cell death, peptidyl-serine phosphorylation, and cerebral cortex development process, revealing epigenetic-transcriptomic pathways to smoking-related diseases such as osteoporosis, atherosclerosis, and cognitive impairment. These findings contribute to a deeper understanding of the pathophysiology of smoking-related diseases and may provide potential therapeutic targets.


Assuntos
Fumar Cigarros , Masculino , Humanos , Feminino , Epigenoma , Estudo de Associação Genômica Ampla , Metilação de DNA/genética , Perfilação da Expressão Gênica , Ilhas de CpG/genética , Epigênese Genética
5.
Nat Commun ; 13(1): 2408, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504910

RESUMO

We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD.


Assuntos
Metilação de DNA , Inflamação , Proteína C-Reativa/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Humanos , Inflamação/genética , Motivos de Nucleotídeos
6.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298752

RESUMO

MicroRNAs are important in prostate cancer development, progression and metastasis. The aim of this study was to test microRNA expression profile in prostate tissue obtained from prostate cancer patients for associations with various prostate cancer related factors and to pinpoint the predicted target pathways for these microRNAs. Prostate tissue samples were obtained at prostatectomy from patients participating in a trial evaluating impact of pre-operative atorvastatin on serum prostate specific antigen (PSA) and Ki-67 expression in prostate tissue. Prostate tissue microRNA expression profiles were analyzed using OpenArray® MicroRNA Panel. Pathway enrichment analyses were conducted for predicted target genes of microRNAs that correlated significantly with studied factors. Eight microRNAs correlated significantly with studied factors of patients after Bonferroni multiple testing correction. MiR-485-3p correlated with serum HDL-cholesterol levels. In atorvastatin-treated subjects, miR-34c-5p correlated with a change in serum PSA and miR-138-3p with a change in total cholesterol. In the placebo arm, both miR-576-3p and miR-550-3p correlated with HDL-cholesterol and miR-627 with PSA. In pathway analysis, these eight microRNAs related significantly to several pathways relevant to prostate cancer. This study brings new evidence from the expression of prostate tissue microRNAs and related pathways that may link risk factors to prostate cancer and pinpoint new therapeutic possibilities.

7.
Eur J Epidemiol ; 36(11): 1143-1155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091768

RESUMO

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.


Assuntos
Espessura Intima-Media Carotídea , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Estudos Transversais , Epigenoma , Humanos , Fatores de Risco
8.
Bone ; 151: 116030, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34098163

RESUMO

BACKGROUND: Osteoporosis and atherosclerosis are complex multifactorial diseases sharing common risk factors and pathophysiological mechanisms suggesting that these are comorbidities. Omics studies identifying joint molecular markers associated with these diseases are sparse. SUBJECTS AND METHODS: Using liquid chromatography-tandem mass spectrometry, we quantified 437 molecular lipid species from the Young Finns Study cohort (aged 30-45 years and 57% women) and performed lipidome-wide multivariate analysis of variance (MANOVA) with early markers for both diseases. Carotid intima-media thickness for atherosclerosis measured with ultrasound and bone mineral density from distal radius and tibia for osteoporosis measured with peripheral quantitative computed tomography were used as early markers of the diseases. RESULTS: MANOVA adjusted with age, sex and body mass index, identified eight statistically significant (adjusted p-value (padj) < 0.05) and 15 suggestively significant (padj < 0.25) molecular lipid species associated with the studied markers. Similar analysis adjusted additionally for smoking habit, physical activity and alcohol consumption identified four significant and six suggestively significant molecular lipid species. These most significant lipid classes/species jointly associated with the studied markers were glycerolipid/TAG(18:0/18:0/18:1), glycerophospholipid/PC(40:3), sphingolipid/Gb3(d18:1/22:0), and sphingolipid/Gb3(d18:1/24:0). CONCLUSION: Our results support the osteoporosis-atherosclerosis comorbidity hypothesis and present potential new joint lipid biomarkers for these diseases.


Assuntos
Aterosclerose , Osteoporose , Biomarcadores , Espessura Intima-Media Carotídea , Comorbidade , Feminino , Finlândia/epidemiologia , Humanos , Lipidômica , Masculino , Osteoporose/epidemiologia , Fatores de Risco
9.
Sci Rep ; 11(1): 7111, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782480

RESUMO

We analysed whole blood genome-wide expression data to identify gene co-expression modules shared by early traits of osteoporosis and atherosclerosis. Gene expression was profiled for the Young Finns Study participants. Bone mineral density and content were measured as early traits of osteoporosis. Carotid and bulbus intima media thickness were measured as early traits of atherosclerosis. Joint association of the modules, identified with weighted co-expression analysis, with early traits of the diseases was tested with multivariate analysis. Among the six modules significantly correlated with early traits of both the diseases, two had significant (adjusted p-values (p.adj) < 0.05) and another two had suggestively significant (p.adj < 0.25) joint association with the two diseases after adjusting for age, sex, body mass index, smoking habit, alcohol consumption, and physical activity. The three most significant member genes from the significant modules were NOSIP, GXYLT2, and TRIM63 (p.adj ≤ 0.18). Genes in the modules were enriched with biological processes that have separately been found to be involved in either bone metabolism or atherosclerosis. The gene modules and their most significant member genes identified in this study support the osteoporosis-atherosclerosis comorbidity hypothesis and can provide new joint biomarkers for both diseases and their dual prevention.


Assuntos
Aterosclerose/genética , Expressão Gênica , Genoma Humano , Osteoporose/genética , Adulto , Biomarcadores , Densidade Óssea , Estudos de Coortes , Feminino , Finlândia , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Reprodutibilidade dos Testes
10.
Biosci Rep ; 40(7)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32583859

RESUMO

Smoking as a major risk factor for morbidity affects numerous regulatory systems of the human body including DNA methylation. Most of the previous studies with genome-wide methylation data are based on conventional association analysis and earliest threshold-based gene set analysis that lacks sensitivity to be able to reveal all the relevant effects of smoking. The aim of the present study was to investigate the impact of active smoking on DNA methylation at three biological levels: 5'-C-phosphate-G-3' (CpG) sites, genes and functionally related genes (gene sets). Gene set analysis was done with mGSZ, a modern threshold-free method previously developed by us that utilizes all the genes in the experiment and their differential methylation scores. Application of such method in DNA methylation study is novel. Epigenome-wide methylation levels were profiled from Young Finns Study (YFS) participants' whole blood from 2011 follow-up using Illumina Infinium HumanMethylation450 BeadChips. We identified three novel smoking related CpG sites and replicated 57 of the previously identified ones. We found that smoking is associated with hypomethylation in shore (genomic regions 0-2 kilobases from CpG island). We identified smoking related methylation changes in 13 gene sets with false discovery rate (FDR) ≤ 0.05, among which is olfactory receptor activity, the flagship novel finding of the present study. Overall, we extended the current knowledge by identifying: (i) three novel smoking related CpG sites, (ii) similar effects as aging on average methylation in shore, and (iii) a novel finding that olfactory receptor activity pathway responds to tobacco smoke and toxin exposure through epigenetic mechanisms.


Assuntos
Fumar Cigarros/efeitos adversos , Metilação de DNA , Epigênese Genética , Adulto , Envelhecimento/genética , Fumar Cigarros/sangue , Fumar Cigarros/genética , Ilhas de CpG/genética , Epigenoma/genética , Feminino , Finlândia , Seguimentos , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , não Fumantes , Estudos Prospectivos , Receptores Odorantes/metabolismo , Transdução de Sinais/genética , Olfato/genética , Fumaça/efeitos adversos , Fumantes , Nicotiana/efeitos adversos
11.
Aging (Albany NY) ; 11(7): 2045-2070, 2019 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31009935

RESUMO

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.


Assuntos
Envelhecimento/genética , Envelhecimento/psicologia , Epigênese Genética , Estilo de Vida , Idoso , Estudos de Coortes , Metilação de DNA , Escolaridade , Feminino , Humanos , Masculino , Mutação , Fatores de Risco , Classe Social
12.
EBioMedicine ; 38: 206-216, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30442561

RESUMO

BACKGROUND: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. METHODS: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n = 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). FINDINGS: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0·012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 × 10-7 < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 × 10-8 < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. INTERPRETATION: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. FUND: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.


Assuntos
Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Loci Gênicos , Exposição Materna/efeitos adversos , Fenótipo , Efeitos Tardios da Exposição Pré-Natal , Fumar/efeitos adversos , Fatores de Transcrição/genética , Adulto , Biomarcadores , Ilhas de CpG , Metilação de DNA , Metabolismo Energético , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Vigilância da População , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA