Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancer Lett ; 587: 216779, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458592

RESUMO

Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Separação de Fases , Apoptose/genética , Autofagia/genética , Transdução de Sinais/fisiologia , Neoplasias/genética
2.
ACS Omega ; 8(43): 40677-40684, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953834

RESUMO

The increased understanding of the competitive endogenous RNA (ceRNA) network in the onset and development of breast cancers has suggested their use as promising disease biomarkers. Keeping these RNAs as molecular targets, we designed and developed an optical nanobiosensor for specific detection of the miRNAs-LncRNAs-mRNAs triad grid in circulation. The sensor was formulated using three quantum dots (QDs), i.e., QD-705, QD-525, and GQDs. These QDs were surface-activated and modified with a target-specific probe. The results suggested the significant ability of the developed nanobiosensor to identify target RNAs in both isolated and plasma samples. Apart from the higher specificity and applicability, the assessment of the detection limit showed that the sensor could detect the target up to 1 fg concentration. After appropriate validation, the developed nanobiosensor might prove beneficial to characterizing and detecting aberrant disease-specific cell-free circulating miRNAs-lncRNAs-mRNAs.

3.
Drug Discov Today ; 28(12): 103821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935329

RESUMO

Polycystic ovary syndrome (PCOS) prevails in approximately 33% of females of reproductive age globally. Although the root cause of the disease is unknown, attempts are made to clinically manage the disturbed hormone levels and symptoms arising due to hyperandrogenism, a hallmark of PCOS. This review presents detailed insights on the etiology, risk factors, current treatment strategies, and challenges therein. Medicinal agents currently in clinical trials and those in the development pipeline are emphasized. The significance of the inclusion of herbal supplements in PCOS and the benefits of improved lifestyle are also explained. Last, emerging therapeutic targets for treating PCOS are elaborated. The present review will assist the research fraternity working in the concerned domain to access significant knowledge associated with PCOS.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/diagnóstico , Hiperandrogenismo/complicações , Suplementos Nutricionais , Fatores de Risco
5.
Rev Environ Health ; 38(3): 547-564, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35724323

RESUMO

Air pollution has emerged as a serious threat to human health due to close association with spectrum of chronic ailments including cardiovascular disorders, respiratory diseases, nervous system dysfunctions, diabetes and cancer. Exposure to air-borne pollutants along with poor eating behaviours and inferior dietary quality irreversibly impacts epigenomic landscape, leading to aberrant transcriptional control of gene expression which is central to patho-physiology of non-communicable diseases. It is assumed that nutriepigenomic interventions such as vitamins can control such adverse effects through their immediate action on mitochondrial epigenomic-axis. Importantly, the exhaustive clinical utility of vitamins-interceded epigenetic synchronization is not well characterized. Therefore, improving the current limitations linked to stability and bioavailability issues in vitamin formulations is highly warranted. The present review not only sums up the available data on the role of vitamins as potential epigenetic modifiers but also discusses the importance of nano-engineered vitamins as potential epidrugs for dietary and pharmacological intervention to mitigate the long-term effects of air pollution toxicity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Vitaminas , Epigenômica , Poluição do Ar/análise , Vitamina A , Vitamina K , Epigênese Genética , Material Particulado/análise , Exposição Ambiental/efeitos adversos
6.
Med Oncol ; 40(1): 41, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471176

RESUMO

Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure-activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review.


Assuntos
Antineoplásicos , Inibidores da Aromatase , Neoplasias da Mama , Cumarínicos , Estrogênios , Neoplasias Hormônio-Dependentes , Feminino , Humanos , Antineoplásicos/uso terapêutico , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Química Farmacêutica , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/uso terapêutico , Estrogênios/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico
7.
ACS Omega ; 7(44): 39586-39602, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385871

RESUMO

Graphene quantum dots (GQDs) are carbonaceous nanodots that are natural crystalline semiconductors and range from 1 to 20 nm. The broad range of applications for GQDs is based on their unique physical and chemical properties. Compared to inorganic quantum dots, GQDs possess numerous advantages, including formidable biocompatibility, low intrinsic toxicity, excellent dispensability, hydrophilicity, and surface grating, thus making them promising materials for nanophotonic applications. Owing to their unique photonic compliant properties, such as superb solubility, robust chemical inertness, large specific surface area, superabundant surface conjugation sites, superior photostability, resistance to photobleaching, and nonblinking, GQDs have emerged as a novel class of probes for the detection of biomolecules and study of their molecular interactions. Here, we present a brief overview of GQDs, their advantages over quantum dots (QDs), various synthesis procedures, and different surface conjugation chemistries for detecting cell-free circulating nucleic acids (CNAs). With the prominent rise of liquid biopsy-based approaches for real-time detection of CNAs, GQDs-based strategies might be a step toward early diagnosis, prognosis, treatment monitoring, and outcome prediction of various non-communicable diseases, including cancers.

8.
J Pharm Biomed Anal ; 204: 114285, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333453

RESUMO

Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sistemas Automatizados de Assistência Junto ao Leito , Prognóstico , RNA Longo não Codificante/genética
9.
J Breath Res ; 15(4)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34111861

RESUMO

Traffic-related air pollution exposure (TRAP) is a major public health problem. The effects of TRAP exposure on the oxidative biomarkers of exhaled breath condensate (EBC) of adults are seldom studied. We compared the oxidative EBC biomarkers in a group of individuals exposed to TRAP with those of individuals unexposed to TRAP. We conducted a case-control study in Bhopal City (Madhya Pradesh, India). Adults with a history of exposure to TRAP were enrolled as cases and adults with less exposure to TRAP were used as a control. Based on respiratory symptoms and smoking habits, study subjects were stratified into six subgroups. EBC was collected by TURBO14 (Medivac SRL, Italy) at -5 °C. The EBC pH was measured after gas standardization with argon. EBC hydrogen peroxide (H2O2), cystenine leukotrienes (Cys-LTs), 8-isoprostane were measured by commercial ELISA kit. A total of 250 consecutive adult (male: 194) subjects were recruited. Among them, 133 were TRAP-exposed (male: 128) and 117 were non-TRAP-exposed (male: 66). The respiratory symptoms between TRAP-exposed and non-TRAP-exposed subjects were not different. The post-gas standardized EBC pH (median: 7.72; interquartile range (IQR): 7.15-7.94 vs. median: 7.60, IQR: 6.72-7.87;p= 0.09) and EBC H2O2(median: 2.20µmol l-1; IQR: 1.46-3.51 vs. median: 1.99, IQR: 1.41-3.10;p= 0.29) in TRAP-exposed subjects were statistically not different from the non-TRAP-exposed subjects. The EBC Cys-LTs (median: 69.81; IQR: 57.0-83.38 vs. median: 47.21 pg ml-1; IQR: 39.90-54.87,p< 0.001) and EBC 8-isoprostane (median: 12.55 pg ml-1; IQR: 5.51-18.09 vs. median: 7.12; IQR: 4.60-16.04,p= 0.026) in TRAP-exposed subjects were higher compared to those in non-TRAP-exposed subjects. The subgroup analysis showed that TRAP-exposed subjects, irrespective of their smoking habits and respiratory symptoms, had higher EBC Cys-LTs compared to the non-TRAP-exposed subjects. TRAP exposure increases oxidative biomarkers of the EBC in adults.


Assuntos
Poluição do Ar , Peróxido de Hidrogênio , Adulto , Poluição do Ar/efeitos adversos , Biomarcadores/metabolismo , Testes Respiratórios , Estudos de Casos e Controles , Humanos , Masculino , Estresse Oxidativo
10.
Drug Discov Today ; 26(6): 1501-1509, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647439

RESUMO

Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.


Assuntos
MicroRNA Circulante/genética , Neoplasias Pulmonares/diagnóstico , Testes Imediatos , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Humanos , Neoplasias Pulmonares/genética , Nanoestruturas
11.
Clin Exp Reprod Med ; 47(4): 245-262, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33227186

RESUMO

In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.

12.
Int J Toxicol ; 39(5): 465-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32588678

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) refer to a ubiquitous group of anthropogenic air pollutants that are generated through incomplete carbon combustion. Although the immunotoxic nature of PAHs has been previously reported, the underlying molecular mechanisms of this effect are not fully understood. In the present study, we investigated the mitochondrial-mediated epigenetic regulation of 2 PAHs, carcinogenic (benzo[a]pyrene; BaP) and noncarcinogenic (anthracene [ANT]), in peripheral lymphocytes. While ANT exposure triggered mitochondrial oxidative damage, no appreciable epigenetic modifications were observed. On the other hand, exposure to BaP perturbed the mitochondrial redox machinery and initiated cascade of epigenetic modifications. Cells exposed to BaP showed prominent changes in the expression of mitochondrial microRNAs (miR-24, miR-34a, miR-150, and miR-155) and their respective gene targets (NF-κß, MYC, and p53). The exposure of BaP also caused significant alterations in the expression of epigenetic modifiers (DNMT1, HDAC1, HDAC7, KDM3a, EZH2, and P300) and hypomethylation within nuclear and mitochondrial DNA. This further induced methylation of histone tails, which play a crucial role in the regulation of chromatin structure. Overall, our study provides novel mechanistic insights into the mitochondrial regulation of epigenetic modifications in association with PAH-induced immunotoxicity.


Assuntos
Poluentes Atmosféricos/toxicidade , Antracenos/toxicidade , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Linfócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Linfócitos/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Drug Deliv Transl Res ; 10(5): 1203-1227, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32172351

RESUMO

Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.


Assuntos
Engenharia Celular , Imunoterapia , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/terapia , Microambiente Tumoral
14.
Front Biosci (Landmark Ed) ; 24(6): 1097-1157, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844733

RESUMO

Diet and environment are two critical regulators that influence an individual's epigenetic profile. Besides the anterograde signaling, mitochondria act as a key regulator of epigenetic alterations in cancer either by controlling the concentration of the cofactors, activity of vital enzymes or by affecting the transcription of NF-kappaB and associated signaling molecules. As epigenetic modifications are the major drivers of aberrant gene expression, designing novel nutri-epigenomic strategies to modulate reversible epigenetic modifications will be important for effective cancer protection. In this regard, nutraceuticals such as flavonoids holds significant promise to modulate the epigenome through a network of interconnected anti-redox mechanisms. However, low solubility, rapid metabolism and poor absorption of flavonoids in gastrointestinal tract hinder their use in clinical settings. Therefore, it is imperative to develop nano-engineered systems which could considerably improve the targeted delivery of these bioactive compounds with better efficacy and pharmacokinetic properties. Concerted efforts in nano-engineering of flavonoids using polymer, lipid and complexation based approaches could provide successful bench-to-bedside translation of flavonoids as broad spectrum anti-cancer agents.


Assuntos
Flavonoides/química , Nanomedicina/métodos , Neoplasias/prevenção & controle , Acetilação , Animais , Linhagem Celular Tumoral , Citosina/química , Metilação de DNA , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Epigênese Genética , Epigenômica , Histonas/química , Humanos , Lipídeos/química , Lipossomos/química , Micelas , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Nanopartículas , Fosforilação , Polímeros/química , Ubiquitina/química
15.
Biosens Bioelectron ; 130: 147-165, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735948

RESUMO

Early cancer diagnosis is of prime importance as it paves the way for effective treatment and possible patient survival. The recent advancements in the field of biosensorics have facilitated the development of functionalized nanobiosensors which have the potential to provide a cost-effective, reliable and rapid diagnostic strategy for cancers. These nanoscaled sensing systems utilize electrochemical, optical, mass and calorimetric sensing mechanisms to specifically identify the disease-specific biomarkers. Because of clinical translational utility, the present review aims to describe the recent developments and status of the nanobiosensors as a point-of-care approach for cancer diagnosis. The review also offers important insights into the design, preparation and characterization of these nano-frameworks. In particular, the state-of-art nanobiosensors based on carbon nanostructures, metal nanoparticles, magnetic nanoparticles, silica-based nanomaterials, conducting polymers based nanoparticles and quantum dots, which provide countless opportunities in the field of cancer biosensorics have been summarized. It also showcases the need to perform robust clinical validation of the emerging nanobiosensor strategies that would act as the ultimate point-of-care test for the personalized cancer therapeutics.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais , Nanopartículas Metálicas/química , Neoplasias/diagnóstico , Biomarcadores Tumorais/genética , Humanos , Neoplasias/genética , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Pontos Quânticos/química
16.
Curr Drug Targets ; 19(10): 1127-1147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28891455

RESUMO

BACKGROUND: Particulate matter directly emitted into the air by sources such as combustion processes and windblown dust, or formed in the atmosphere by transformation of emitted gases are the major contributors to air pollution that triggers a diverse array of human pathologies including lung cancer. The mortality in lung cancer is usually high as the disease is not symptomatic at its early treatable stage. Moreover, available methods for screening are costly and mainly rely on imaging techniques which lack sufficient sensitivity and specificity. Despite progress in the identification of biomarkers, gene mutation based approaches still face formidable challenges as the disease evolves from a complex interplay between environment and host. Therefore, identification of an epigenomic signature might be useful for early diagnosis with the potential to reduce the environmental-associated disease burden. OBJECTIVE: The review discusses the utility of epigenomic signature in identification and management of the environmental-associated lung cancers. CONCLUSION: Non-invasive 'liquid biopsy' based epigenomic screening has recently emerged as a methodology which has potential to characterize tumor heterogeneity at initial stages. Epigenetic signatures (methylated DNA, miRNA, and post transcriptionally modified histones) known to reflect the vital cellular changes, circulate at higher levels in the individuals with lung cancer. These circulating biological entities are reported to be closely associated with the clinical outcome of lung cancer patients and thus strongly stand as the probable candidate to identify disease at an early stage and monitor treatment response, thereby, benefiting patients and improving their lives. However, for effective implementation of the strategy as "point-of-care" test for screening population-at-risk will require exhaustive clinical validation.


Assuntos
Biomarcadores Tumorais/genética , Epigênese Genética , Exposição por Inalação/efeitos adversos , Neoplasias Pulmonares/genética , Material Particulado/efeitos adversos , Animais , Biomarcadores Tumorais/sangue , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Metilação de DNA , Detecção Precoce de Câncer/métodos , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Biópsia Líquida , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Fenótipo , Prognóstico , Processamento de Proteína Pós-Traducional , Medição de Risco , Fatores de Risco , Transcriptoma
17.
Indian J Med Res ; 148(Suppl): S50-S63, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30964081

RESUMO

Female reproductive tract cancers (FRCs) are considered as one of the most frequently occurring malignancies and a foremost cause of death among women. The late-stage diagnosis and limited clinical effectiveness of currently available mainstay therapies, primarily due to the developed drug resistance properties of tumour cells, further increase disease severity. In the past decade, dendritic cell (DC)-based immunotherapy has shown remarkable success and appeared as a feasible therapeutic alternative to treat several malignancies, including FRCs. Importantly, the clinical efficacy of this therapy is shown to be restricted by the established immunosuppressive tumour microenvironment. However, combining nanoengineered approaches can significantly assist DCs to overcome this tumour-induced immune tolerance. The prolonged release of nanoencapsulated tumour antigens helps improve the ability of DC-based therapeutics to selectively target and remove residual tumour cells. Incorporation of surface ligands and co-adjuvants may further aid DC targeting (in vivo) to overcome the issues associated with the short DC lifespan, immunosuppression and imprecise uptake. We herein briefly discuss the necessity and progress of DC-based therapeutics in FRCs. The review also sheds lights on the future challenges to design and develop clinically effective nanoparticles-DC combinations that can induce efficient anti-tumour immune responses and prolong patients' survival.


Assuntos
Engenharia Celular , Células Dendríticas/transplante , Neoplasias dos Genitais Femininos/terapia , Imunoterapia , Feminino , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/patologia , Genitália Feminina/patologia , Humanos , Microambiente Tumoral/genética
18.
Environ Pollut ; 234: 406-419, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29202419

RESUMO

Particulate matter (PM), broadly defined as coarse (2.5-10 µm), fine (0.1-2.5 µm) and ultrafine particles (≤0.1 µm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response pathway, an unknown molecular paradigm of ultrafine PM exposure. Our findings also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in air pollution associated immune disorders.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA/efeitos dos fármacos , Linfócitos/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Apoptose/efeitos dos fármacos , Dano ao DNA/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Feminino , Homeostase , Humanos , Masculino , Oxirredução/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/análise
19.
Drug Deliv Transl Res ; 7(2): 346-358, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28050890

RESUMO

The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.


Assuntos
RNA Interferente Pequeno/administração & dosagem , Inativação Gênica , Humanos , Nanotecnologia , Neoplasias/terapia , Resultado do Tratamento
20.
Front Biosci (Landmark Ed) ; 21(4): 769-93, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709805

RESUMO

Mitochondria play a fundamental role in regulating a variety of complex metabolic processes to maintain adequate energy balance for cellular existence. To orchestrate these functions, an undisturbed mitochondrial dynamics is imperative through a set of tightly guided mechanisms. Interference in key signature processes by several genetic, epigenetic and age-linked factors triggers mitochondrial dysfunction through decrease in mitochondrial biogenesis, reduced mitochondrial content, aberrant mtDNA mutations, increased oxidative stress, deficient mitophagy, energy dysfunction, decrease in anti oxidant defense and impaired calcium homeostasis. Mitochondrial dysfunction is widely implicated in origin and development of various age associated degenerative human ailments including metabolic syndromes, cardiovascular diseases, cancer, diabetes and neurodegenerative disorders. The present review revisits the mitochondrial anomalies involved in aetiology of different human diseases and also highlights the translational significance of nano-vectors aimed for selective mitochondrial engineering which might pave way for development of novel therapeutics.


Assuntos
Envelhecimento/patologia , Doenças Mitocondriais/patologia , Epigênese Genética , Humanos , Doenças Mitocondriais/genética , Mitofagia , Oxirredução , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA