Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(15): 2281-2287, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35856925

RESUMO

A strong association between protein aggregation and human diseases (such as Alzheimer's, Parkinson's, and Huntington's disease) is well demonstrated. Misfolding and aggregation of p53, a central transcriptional mediator, has been revealed by various experimental evidence in different types of cancers. Aggregation studies focusing on different p53 domains, mostly, the central core domain and its mutants under the influence of various environmental conditions, and the p53 transactivation domain (TAD) (1-63) have been reported. However, the specific subdomains responsible for p53 aggregation are not known. p53 TADs interact with diverse cellular factors to modulate the function of p53 and elicit appropriate cellular responses under different stress conditions. In this study, the aggregation of the p53 TAD2 domain (38-61) has been studied in isolation. The aggregates were generated in vitro under acidic pH conditions after in silico scoring for amyloidogenic tendency and characterized using dye-based assays (ThT and bis-ANS fluorescence), CD spectroscopy, and microscopy (scanning electron microscoy, transmission electron microscopy, and atomic force microscopy). It was observed that p53 TAD2 forms characteristic ß-sheet-rich amyloid-like fibrils. Via a reductionist approach, this study highlights the nature of p53 TAD2 domain (38-61) aggregation.


Assuntos
Amiloidose , Proteína Supressora de Tumor p53 , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Agregados Proteicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Mol Imaging ; 19: 1536012120969477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112721

RESUMO

Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.


Assuntos
Imageamento por Ressonância Magnética , Fluorescência , Células HeLa , Humanos
3.
Arch Biochem Biophys ; 689: 108459, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32592801

RESUMO

Although the mystery molecule p53 has been studied extensively, still several unknown mechanisms need to be elucidated. Being a central hub of cellular signaling pathways, the function of p53 is precisely executed synergistically by its intrinsically disordered and structural domains. The disordered N-terminal region further modulates p53 function by undergoing promiscuous binding and folding with several partners with the help of TAD1 and TAD2 motifs. Among these regions, a significant contribution is made by TAD2 in terms of binding affinities. This heterogeneity in p53 TAD region motivates to employ a reductionist approach to understand the folding behavior of TAD2 region independently under a broad range of different pH, temperature and solvent conditions. Since the intracellular environment is complex and crowded with a variety of molecules providing different type of surfaces from polar to hydrophobic, it is mandatory to characterize the conformational heterogeneity of disordered proteins to completely understand their function. Different types of alcohols were used to estimate the structure forming capabilities of the TAD2 peptides using circular dichroism, fluorescence and lifetime spectroscopy. The alcohols ethanol, TFE and HFIP were previously known to induce increasing levels of hydrophobic environments in water-alcohol mixtures respectively. Our results have shown that TAD2 peptide undergoes a dehydration dependent induction of hydrophobic interactions leading towards structural transitions in presence of organic solvents. This study is highlighting the importance of hydrophobic surfaces playing a crucial role in TAD2 interaction and conformational transitions.


Assuntos
Proteína Supressora de Tumor p53/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Solventes/química
4.
J Pept Sci ; 25(4): e3152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784133

RESUMO

Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248-286 was found to be the most active and was termed as semen-derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248-286 significantly differs from the other known amyloidogenic peptides, including Aß and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), on PAP248-286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248-286 . Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C-terminus are crucial for PAP248-286 aggregation and are anticipated to be major DOPC-interacting partners. Therefore, we further assessed the aggregation behaviour of C-terminal (PAP273-286 ) fragment of PAP248-286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to ß-sheet transition.


Assuntos
Peptídeos/antagonistas & inibidores , Fosfatidilcolinas/farmacologia , Sêmen/química , Humanos , Cinética , Fosfatidilcolinas/química , Agregados Proteicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA