Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 56(5): 530-545, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168821

RESUMO

BACKGROUND/AIMS: Cells require regular maintenance of proteostasis. Synthesis of new polypeptides and elimination of damaged or old proteins is an uninterrupted mechanism essential for a healthy cellular environment. Impairment in the removal of misfolded proteins can disturb proteostasis; such toxic aggregation of misfolded proteins can act as a primary risk factor for neurodegenerative diseases and imperfect ageing. The critical challenge is to design effective protein quality control (PQC) based molecular tactics that could potentially eliminate aggregation-prone protein load from the cell. Still, targeting specific components of the PQC pathway for the suppression of proteotoxic insults retains several challenges. Earlier, we had observed that LRSAM1 promotes the degradation of aberrant proteins. Here, we examined the effect of resveratrol, a stilbenoid phytoalexin compound, treatment on LRSAM1 E3 ubiquitin ligase, involved in the spongiform neurodegeneration. METHODS: In this study, we reported induction of mRNA and protein levels of LRSAM1 in response to resveratrol treatment via RT-PCR, immunoblotting, and immunofluorescence analysis. The LRSAM1-mediated proteasomal-based clearance of misfolded proteins was also investigated via proteasome activity assays, immunoblotting and immunofluorescence analysis. The increased stability of LRSAM1 by resveratrol was demonstrated by cycloheximide chase analysis. RESULTS: Here, we show that resveratrol treatment induces LRSAM1 E3 ubiquitin ligase expression levels. Further, our findings suggest that overexpression of LRSAM1 significantly elevates proteasome activities and improves the degradation of bona fide heat-denatured luciferase protein. Exposure of resveratrol not only slows down the turnover of LRSAM1 but also effectively degrades abnormal proteinaceous inclusions, which eventually promotes cell viability. CONCLUSION: Our findings suggest that resveratrol facilitates LRSAM1 endogenous establishment, which consequently promotes the proteasome machinery for effective removal of intracellular accumulated misfolded or proteasomal-designated substrates. Altogether, our study proposes a promising molecular approach to specifically trigger PQC signaling for efficacious rejuvenation of defective proteostasis via activation of overburdened proteolytic machinery.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Cicloeximida , Luciferases , Peptídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro , Resveratrol/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Neurobiol ; 58(12): 6593-6609, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590243

RESUMO

According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Ribossomos/metabolismo , Medula Espinal/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Humanos , Neurônios/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/metabolismo , Ubiquitinação
3.
Cell Signal ; 77: 109836, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207262

RESUMO

Numerous proteins participate and actively contribute to the various cellular mechanisms, where several of them are crucial for regular metabolism, including survival. Thus, to maintain optimal cellular physiology, cells govern protein quality control functions with the assistance of comprehensive actions of molecular chaperones, the ubiquitin-proteasome system, and autophagy. In the ubiquitin-proteasome pathway, few quality control E3 ubiquitin ligases actively participate against misfolded protein aggregation generated via stress conditions. But how these quality control E3s active expression levels returned to basal levels when cells achieved re-establishment of proteostasis is still poorly understood. Our current study demonstrated that LRSAM1 E3 ubiquitin ligase promotes the proteasomal degradation of quality control E3 ubiquitin ligase E6-AP. We have observed the co-localization and recruitment of LRSAM1 with E6-AP protein and noticed that LRSAM1 induces the endogenous turnover of E6-AP. Partial depletion of LRSAM1 elevates the levels of E6-AP and affects overall cell cycle regulatory proteins (p53 and p27) expression, including the rate of cellular proliferation. The current finding also provides an excellent opportunity to better understand the basis of the E6-AP associated pathomechanism of Angelman Syndrome disorder. Additionally, this study touches upon the novel potential molecular strategy to regulate the levels of one quality control E3 ubiquitin ligase with another E3 ubiquitin ligase and restore proteostasis and provide a possible therapeutic approach against abnormal protein aggregation diseases.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Agregados Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
4.
Sci Rep ; 9(1): 16872, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728006

RESUMO

CAG repeats RNA causes various fatal neurodegenerative diseases exemplified by Huntington's disease (HD) and several spinocerebellar ataxias (SCAs). Although there are differences in the pathogenic mechanisms, these diseases share the common cause, i.e., expansion of CAG repeats. The shared cause of these diseases raises the possibility for the exploiting the common target as a potential therapeutic approach. Oligonucleotide-based therapeutics are designed earlier with the help of the base pairing rule but are not very promiscuous, considering the nonspecific stimulation of the immune system and the poor cellular delivery. Therefore, small molecules-based therapeutics are preferred for targeting the repeats expansion disorders. Here, we have used the chemical similarity search approach to discern the small molecules that selectively target toxic CAG RNA. The lead compounds showed the specificity towards AA mismatch in biophysical studies including CD, ITC, and NMR spectroscopy and thus aided to forestall the polyQ mediated pathogenicity. Furthermore, the lead compounds also explicitly alleviate the polyQ mediated toxicity in HD cell models and patient-derived cells. These findings suggest that the lead compound could act as a chemical probe for AA mismatch containing RNA as well as plays a neuroprotective role in fatal neurodegenerative diseases like HD and SCAs.


Assuntos
Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/antagonistas & inibidores , RNA/química , Bibliotecas de Moléculas Pequenas/farmacologia , Benzotiazóis/química , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Fibroblastos/metabolismo , Fibroblastos/patologia , Flavonoides/química , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/metabolismo , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , RNA/genética , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos
5.
J Cell Physiol ; 234(11): 20900-20914, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31004355

RESUMO

Major neurodegenerative disorders are characterized by the formation of misfolded proteins aggregates inside or outside the neuronal cells. Previous studies suggest that aberrant proteins aggregates play a critical role in protein homeostasis imbalance and failure of protein quality control (PQC) mechanism, leading to disease conditions. However, we still do not understand the precise mechanisms of PQC failure and cellular dysfunctions associated with neurodegenerative diseases caused by the accumulation of protein aggregates. Here, we show that Myricetin, a flavonoid, can eliminate various abnormal proteins from the cellular environment via modulating endogenous levels of Hsp70 chaperone and quality control (QC)-E3 ubiquitin ligase E6-AP. We have observed that Myricetin treatment suppresses the aggregation of different aberrant proteins. Myricetin also enhances the elimination of various toxic neurodegenerative diseases associated proteins from the cells, which could be reversed by the addition of putative proteasome inhibitor (MG132). Remarkably, Myricetin can also stabilize E6-AP and reduce the misfolded proteins inclusions, which further alleviates cytotoxicity. Taken together these findings suggested that new mechanistic and therapeutic insights based on small molecules mediated regulation of disturbed protein quality control mechanism, which may result in the maintenance of the state of proteostasis.


Assuntos
Flavonoides/farmacologia , Degeneração Neural/metabolismo , Polifenóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Regulação para Cima/efeitos dos fármacos , Células A549 , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Luciferases/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Degeneração Neural/patologia , Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Solubilidade , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo
6.
Cell Mol Life Sci ; 76(11): 2093-2110, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30826859

RESUMO

Cellular protein quality control (PQC) plays a significant role in the maintenance of cellular homeostasis. Failure of PQC mechanism may lead to various neurodegenerative diseases due to accumulation of aberrant proteins. To avoid such fatal neuronal conditions PQC employs autophagy and ubiquitin proteasome system (UPS) to degrade misfolded proteins. Few quality control (QC) E3 ubiquitin ligases interplay an important role to specifically recognize misfolded proteins for their intracellular degradation. Leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1) is a really interesting new gene (RING) class protein that possesses E3 ubiquitin ligase activity with promising applications in PQC. LRSAM1 is also known as RING finger leucine repeat rich (RIFLE) or TSG 101-associated ligase (TAL). LRSAM1 has various cellular functions as it modulates the protein aggregation, endosomal sorting machinery and virus egress from the cells. Thus, this makes LRSAM1 interesting to study not only in protein conformational disorders such as neurodegeneration but also in immunological and other cancerous disorders. Furthermore, LRSAM1 interacts with both cellular protein degradation machineries and hence it can participate in maintenance of overall cellular proteostasis. Still, more research work on the quality control molecular functions of LRSAM1 is needed to comprehend its roles in various protein aggregatory diseases. Earlier findings suggest that in a mouse model of Charcot-Marie-Tooth (CMT) disease, lack of LRSAM1 functions sensitizes peripheral axons to degeneration. It has been observed that in CMT the patients retain dominant and recessive mutations of LRSAM1 gene, which encodes most likely a defective protein. However, still the comprehensive molecular pathomechanism of LRSAM1 in neuronal functions and neurodegenerative diseases is not known. The current article systematically represents the molecular functions, nature and detailed characterization of LRSAM1 E3 ubiquitin ligase. Here, we review emerging molecular mechanisms of LRSAM1 linked with neurobiological functions, with a clear focus on the mechanism of neurodegeneration and also on other diseases. Better understanding of LRSAM1 neurobiological and intracellular functions may contribute to develop promising novel therapeutic approaches, which can also propose new lines of molecular beneficial targets for various neurodegenerative diseases.


Assuntos
Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Nervos Periféricos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Axônios/metabolismo , Axônios/patologia , Regulação da Expressão Gênica , Humanos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nervos Periféricos/patologia , Agregados Proteicos , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Proteostase/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
J Cell Physiol ; 233(2): 1685-1699, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28681929

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are mainly used to treat pain, inflammation, and fever via cyclooxygenase-2 (COX-2) inhibition. There are abundant findings that uncover the hidden critical chemotherapeutics potential of NSAIDs in cancer treatment. However, still the precise mechanism by which NSAIDs could be used as an effective anti-tumor agent in the prevention of carcinogenesis is not well understood. Here, we show that indomethacin, a well-known NSAID, induces proteasomal dysfunction that results in accumulation of unwanted proteins, mitochondrial abnormalities, and successively stimulate apoptosis in cells. We observed the interaction of indomethacin with proteasome and noticed the massive accumulation of intracellular ubiquitin-positive proteins, which might be due to the suppression of proteasome activities. Furthermore, we also found that exposure of indomethacin causes the accumulation of critical proteasomal substrates that consequently generate severe mitochondrial abnormalities and prompt up key apoptotic events in cells. Our results demonstrate how indomethacin affects normal proteasomal functions and induces mitochondrial apoptosis in cells. These findings also improve our current understanding of how NSAIDs can exhibit crucial anti-proliferative effects in cells. In near future, our findings may suggest a new possible strategy for the development of specific proteasome inhibitors in conjunction with other chemo-preventive anticancer agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indometacina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Células A549 , Animais , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Indometacina/química , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Agregados Proteicos , Ligação Proteica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Ubiquitinação
8.
Prog Neurobiol ; 159: 1-38, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28870769

RESUMO

Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteoma/fisiologia , Proteostase/fisiologia , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Proteoma/genética , Proteostase/genética
9.
J Cell Biochem ; 118(5): 1014-1027, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27487200

RESUMO

Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Diclofenaco/farmacologia , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Células A549 , Animais , Apoptose , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Potencial da Membrana Mitocondrial/efeitos dos fármacos
10.
Mol Neurobiol ; 53(10): 6968-6981, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26666667

RESUMO

In routine course of life, nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed antipyretic, analgesic, and anti-inflammatory drugs. It is a well-proposed notion that treatment of NSAIDs may induce anti-proliferative effects in numerous cancer cells. Ibuprofen from isobutylphenylpropanoic acid is NSAID and used to relieve fever, pain, and inflammation. It is also used for juvenile idiopathic arthritis, rheumatoid arthritis, patent ductus arteriosus, and for pericarditis. Despite few emerging studies have expanded the fundamental concept that the treatment of NSAIDs influences apoptosis in cancer cells, however the NSAID-mediated precise mechanisms that determine apoptosis induction without producing adverse consequences in variety of cancer cells are largely unknown. In our present study, we have observed that ibuprofen reduces proteasome activity, enhances the aggregation of ubiquitylated abnormal proteins, and also elevates the accumulation of crucial proteasome substrates. Ibuprofen treatment causes mitochondrial abnormalities and releases cytochrome c into cytosol. Perhaps, the more detailed study is needed in the future to elucidate the molecular mechanisms of NSAIDs that can induce apoptosis without adverse effects and produce effective anti-tumor effects and consequently help in neurodegeneration and ageing.


Assuntos
Apoptose/efeitos dos fármacos , Ibuprofeno/farmacologia , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células A549 , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatina/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Corpos de Inclusão/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Proteínas Ubiquitinadas/metabolismo
11.
Ageing Res Rev ; 24(Pt B): 138-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26247845

RESUMO

Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.


Assuntos
Envelhecimento/fisiologia , Degeneração Neural/metabolismo , Doenças Neurodegenerativas , Neuroproteção/fisiologia , Ubiquitina-Proteína Ligases , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA