Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(29): 7842-7866, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502330

RESUMO

RNA interference based therapeutic gene silencing is an emerging platform for managing highly metastatic breast cancer. Cytosolic delivery of functional siRNA remains the key obstacle for efficient RNAi therapy. To overcome the challenges of siRNA delivery, we have engineered a vitamin E-tethered, short, optimum protease stabilized facial lipopeptide based non-immunogenic, biocompatible siRNA transporter to facilitate the clinical translation in future. Our designed lipopeptide has an Arginine-Sarcosine-Arginine segment for providing optimum protease-stability, minimizing adjacent arginine-arginine repulsion and reducing intermolecular aggregation and α-tocopherol as the lipidic moiety for facilitating cellular permeabilization. Interestingly, our designed non-immunogenic siRNA transporter has exhibited significantly better long term transfection efficiency than HiPerFect and can transfect hard to transfect primary cell line, HUVEC. Our engineered siRNA therapeutics demonstrated high efficacy in managing metastasis against triple negative breast cancer by disrupting the crosstalk of endothelial cells and MDA-MB-231 and reduced stemness and metastatic markers, as evidenced by downregulating critical oncogenic pathways. Our study aimed at silencing Notch1 signalling to achieve "multi-targeted" therapy with a single putative molecular medicine. We have further developed mechanistically rational combination therapy combining Notch1 silencing with a repurposed drug m-TOR inhibitor, metformin, which demonstrated synergistic interaction and enhanced antitumor efficacy against cancer metastasis.

2.
ACS Appl Bio Mater ; 6(2): 458-472, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36651932

RESUMO

Small interfering RNA (siRNA) has become the cornerstone against undruggable targets and for managing metastatic breast cancer. However, an effective gene silencing approach is faced with a major challenge due to the delivery problem. In our present study, we have demonstrated efficient siRNA delivery, superior gene silencing, and inhibition of metastasis in triple-negative breast cancer cells (MDA-MB-231) using rod-shaped (aspect ratio: 4) multivalent peptide-functionalized gold nanoparticles and compared them to monovalent free peptide doses. Multivalency is a new concept in biology, and tuning the physical parameters of multivalent nanoparticles can enhance gene silencing and antitumor efficacy. We explored the effect of the multivalency of shape- and size-dependent peptide-functionalized gold nanoparticles in siRNA delivery. Our study demonstrates that peptide functionalization leads to reduced toxicity of the nanoparticles. Such designed peptide-functionalized nanorods also demonstrate antimetastatic efficacy in Notch1-silenced cells by preventing EMT progression in vitro. We have shown siRNA delivery in the hard-to-transfect primary cell line HUVEC and also demonstrated that the Notch1-silenced MDA-MB-231 cell line has failed to form nanobridge-mediated foci with the HUVEC in the co-culture of HUVEC and MDA-MB-231, which promote metastasis. This antimetastatic effect is further checked in a xenotransplant in vivo zebrafish model. In vivo studies also suggest that our designed nanoparticles mediated inhibition of micrometastasis due to silencing of the Notch1 gene. The outcome of our study highlights that the structure-activity relationship of multifunctional nanoparticles can be harnessed to modulate their biological activity.


Assuntos
Nanopartículas Metálicas , Nanotubos , Neoplasias , Animais , Linhagem Celular Tumoral , Inativação Gênica , Ouro , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Peixe-Zebra/genética , Humanos , Neoplasias da Mama/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Metástase Neoplásica
3.
Chem Asian J ; 17(16): e202200451, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35689534

RESUMO

RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.


Assuntos
Neoplasias , Terapêutica com RNAi , Citoplasma/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico
4.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638450

RESUMO

Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia/métodos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA