Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
ACS Appl Mater Interfaces ; 16(22): 28184-28192, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770711

RESUMO

B cells, despite their several unique functionalities, remain largely untapped for use as an adoptive cell therapy and are limited to in vitro use for antibody production. B cells can be easily sourced, they possess excellent lymphoid-homing capabilities, and they can act as antigen-presenting cells (APCs), offering an alternative to dendritic cells (DCs), which have shown limited efficacy in the clinical setting. Soluble factors such as IL-4 and anti-CD40 antibody can enhance the activation, survival, and antigen-presenting capabilities of B cells; however, it is difficult to attain sufficiently high concentrations of these biologics to stimulate B cells in vivo. Micropatches as Cell Engagers (MACE) are polymeric microparticles, surface functionalized with anti-CD40 and anti-IgM, which can attach to B cells and simultaneously engage multiple B-cell receptors (BCR) and CD40 receptors. Stimulation of these receptors through MACE, unlike free antibodies, enhanced the display of costimulatory molecules on the B-cell surface, increased B-cell viability, and improved antigen presentation by B cells to T cells in vitro. B-cell activation by MACE further synergized with soluble IL-4 and anti-CD40. MACE also elicited T-cell chemokine secretion by B cells. Upon intravenous adoptive transfer, MACE-bound B cells homed to the spleen and lymph nodes, key sites for antigen presentation to T cells. Adoptive transfer of MACE-B cells pulsed with the CD4+ and CD8+ epitopes of ovalbumin significantly delayed tumor progression in a murine subcutaneous EG7-OVA tumor model, demonstrating the functional benefit conferred to B cells by MACE.


Assuntos
Linfócitos B , Antígenos CD40 , Polímeros , Animais , Linfócitos B/imunologia , Camundongos , Antígenos CD40/metabolismo , Antígenos CD40/imunologia , Polímeros/química , Receptores de Antígenos de Linfócitos B/metabolismo , Humanos , Linfócitos T/imunologia , Interleucina-4 , Camundongos Endogâmicos C57BL
2.
ACS Appl Mater Interfaces ; 16(22): 28070-28079, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779939

RESUMO

Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.


Assuntos
Células Dendríticas , Polifenóis , Taninos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Taninos/química , Taninos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Humanos , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos
3.
Adv Healthc Mater ; : e2400327, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693774

RESUMO

Messenger ribonucleic acid (mRNA) has long been touted as a next-generation therapeutic modality for infectious disease, cancer, and genetic disorders. Lipid nanoparticles (LNPs) provide an elegant delivery strategy for mRNA cargo to help realize this potential for vaccination. However, systemic exposure seen with traditional LNP formulations can have significant implications on efficacy and safety. Efforts to mitigate this have largely been focused on laborious lipid or LNP redesign. Here, the use of a deep eutectic-lipid nanocomposite delivery system for the tuning of mRNA expression for intramuscular injections in vivo is reported. One deep eutectic, cholinium malonate, allows for the linear control of percent expression at the muscular injection site based solely on its concentration in the formulation. The same deep eutectic solvent (DES) can increase local muscle expression by 68% and significantly decrease off-target liver expression by 72%. Physico-chemical studies suggest that the DES incorporates into or onto the pre-formed LNPs thus impacting endosomal escape and in situ interactions. These nanocomposites provide new possibilities for previously approved LNP formulations and without the need for lipid redesign to induce localized expression.

4.
Adv Healthc Mater ; : e2304144, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581301

RESUMO

Adoptive cell therapies are dramatically altering the treatment landscape of cancer. However, treatment of solid tumors remains a major unmet need, in part due to limited adoptive cell infiltration into the tumor and in part due to the immunosuppressive tumor microenvironment. The heterogeneity of tumors and presence of nonresponders also call for development of antigen-independent therapeutic approaches. Myeloid cells offer such an opportunity, given their large presence in the immunosuppressive tumor microenvironment, such as in triple negative breast cancer. However, their therapeutic utility is hindered by their phenotypic plasticity. Here, the impressive trafficking ability of adoptively transferred monocytes is leveraged into the immunosuppressive 4T1 tumor to develop an antitumor therapy. To control monocyte differentiation in the tumor microenvironment, surface-adherent "backpacks" stably modified with interferon gamma (IFNγ) are developed to stimulate macrophage plasticity into a pro-inflammatory, antitumor phenotype, a strategy as referred to as Ornate Polymer backpacks on Tissue Infiltrating Monocytes (OPTIMs). Treatment with OPTIMs substantially reduces tumor burden in a mouse 4T1 model and significantly increases survival. Cytokine and immune cell profiling reveal that OPTIMs remodeled the tumor microenvironment into a pro-inflammatory state.

5.
Nat Biomed Eng ; 8(5): 579-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424352

RESUMO

Tumour-associated neutrophils can exert antitumour effects but can also assume a pro-tumoural phenotype in the immunosuppressive tumour microenvironment. Here we show that neutrophils can be polarized towards the antitumour phenotype by discoidal polymer micrometric 'patches' that adhere to the neutrophils' surfaces without being internalized. Intravenously administered micropatch-loaded neutrophils accumulated in the spleen and in tumour-draining lymph nodes, and activated splenic natural killer cells and T cells, increasing the accumulation of dendritic cells and natural killer cells. In mice bearing subcutaneous B16F10 tumours or orthotopic 4T1 tumours, intravenous injection of the micropatch-loaded neutrophils led to robust systemic immune responses, a reduction in tumour burden and improvements in survival rates. Micropatch-activated neutrophils combined with the checkpoint inhibitor anti-cytotoxic T-lymphocyte-associated protein 4 resulted in strong inhibition of the growth of B16F10 tumours, and in complete tumour regression in one-third of the treated mice. Micropatch-loaded neutrophils could provide a potent, scalable and drug-free approach for neutrophil-based cancer immunotherapy.


Assuntos
Imunoterapia , Camundongos Endogâmicos C57BL , Neutrófilos , Polímeros , Animais , Neutrófilos/imunologia , Imunoterapia/métodos , Camundongos , Polímeros/química , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Neoplasias/imunologia , Neoplasias/terapia , Células Matadoras Naturais/imunologia , Humanos
6.
J Control Release ; 367: 737-767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325716

RESUMO

Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Injeções
7.
Bioeng Transl Med ; 9(1): e10588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193112

RESUMO

Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.

8.
Sci Transl Med ; 16(728): eadk5413, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170792

RESUMO

The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Camundongos , Suínos , Gadolínio , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/patologia , Macrófagos/patologia
9.
ACS Nano ; 17(16): 15918-15930, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565806

RESUMO

Natural killer (NK) cell therapies have emerged as a potential therapeutic approach to various cancers. Their efficacy, however, is limited by their low persistence and anergy. Current approaches to sustain NK cell persistence in vivo include genetic modification, activation via pretreatment, or coadministration of supporting cytokines or antibodies. Such supporting therapies exhibit limited efficacy in vivo, in part due to the reversal of their effect within the immunosuppressive tumor microenvironment and off-target toxicity. Here, we report a material-based approach to address this challenge. Specifically, we describe the use of polymeric micropatches as a platform for sustained, targeted activation of NK cells, an approach referred to as microparticles as cell engagers (MACE). Poly(lactide-co-glycolic) acid (PLGA) micropatches, 4-8 µm in diameter and surface-modified with NK cell receptor targeting antibodies, exhibited strong adhesion to NK cells and induced their activation without the need of coadministered cytokines. The activation induced by MACE was greater than that induced by nanoparticles, attesting to the crucial role of MACE geometry in the activation of NK cells. MACE-bound NK cells remained viable and exhibited trans-endothelial migration and antitumor activity in vitro. MACE-bound NK cells activated T cells, macrophages, and dendritic cells in vitro. Adoptive transfer of NK-MACE also demonstrated superior antitumor efficacy in a mouse melanoma lung metastasis model compared to unmodified NK cells. Overall, MACE offers a simple, scalable, and effective way of activating NK cells and represents an attractive platform to improve the efficacy of NK cell therapy.


Assuntos
Melanoma , Neoplasias , Animais , Camundongos , Polímeros/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Imunoterapia Adotiva , Melanoma/metabolismo , Citocinas/metabolismo , Microambiente Tumoral
10.
Bioeng Transl Med ; 8(3): e10516, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206230

RESUMO

Uncontrolled bleeding is a life-threatening emergency that requires immediate intervention. Currently available on-site bleeding interventions largely rely on the use of tourniquets, pressure dressing, and other topical hemostatic agents, which can only treat bleeding injuries that are known, accessible, and potentially compressible. Synthetic hemostats that are stable at room temperature, easy to carry, field-usable, and able to stop internal bleeding at multiple or unknown sources, are still lacking. We recently developed a hemostatic agent via polymer peptide interfusion (HAPPI), which can selectively bind to activated platelets and injury sites after intravascular administration. Here we report that HAPPI is highly effective in treating multiple lethal traumatic bleeding conditions in normal as well as hemophilia models via either systemic administration or topical application. In a rat liver traumatic model, intravenous injection of HAPPI resulted in a significant decrease in blood loss and a four-fold reduction in mortality rate within 2 h after injury. When applied topically on liver punch biopsy wounds in heparinized rats, HAPPI achieved a 73% of reduction in blood loss and a five-fold increase in survival rate. HAPPI also exhibited hemostatic efficacy in hemophilia A mice by reducing blood loss. Further, HAPPI worked synergistically with rFVIIa to induce immediate hemostasis and 95% reduction in total blood loss compared to the saline-treated group in hemophelia mice models. These results demonstrate that HAPPI is a promising field-usable hemostatic agent for a broad range of different hemorrhagic conditions.

11.
Bioeng Transl Med ; 8(2): e10408, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925708

RESUMO

Effective chemotherapy delivery for glioblastoma multiforme (GBM) is limited by drug transport across the blood-brain barrier and poor efficacy of single agents. Polymer-drug conjugates can be used to deliver drug combinations with a ratiometric dosing. However, the behaviors and effectiveness of this system have never been well investigated in GBM models. Here, we report flexible conjugates of hyaluronic acid (HA) with camptothecin (CPT) and doxorubicin (DOX) delivered into the brain using focused ultrasound (FUS). In vitro toxicity assays reveal that DOX-CPT exhibited synergistic action against GBM in a ratio-dependent manner when delivered as HA conjugates. FUS is employed to improve penetration of DOX-HA-CPT conjugates into the brain in vivo in a murine GBM model. Small-angle x-ray scattering characterizations of the conjugates show that the DOX:CPT ratio affects the polymer chain flexibility. Conjugates with the highest flexibility yield the highest efficacy in treating mouse GBM in vivo. Our results demonstrate the association of FUS-enhanced delivery of combination chemotherapy and the drug-ratio-dependent flexibility of the HA conjugates. Drug ratio in the polymer nanocomplex may thus be employed as a key factor to modulate FUS drug delivery efficiency via controlling the polymer flexibility. Our characterizations also highlight the significance of understanding the flexibility of drug carriers in ultrasound-mediated drug delivery systems.

12.
Bioeng Transl Med ; 8(2): e10452, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925712

RESUMO

Periodontitis induced by chronic subgingival infection is a ubiquitous disease that causes systemic inflammatory consequences and poses a negative impact on quality of life. The disease is treated and potentially prevented by patient's self-care aimed at eliminating the oral pathogens from the region. Currently available products for interdental self-care, including dental floss and interdental brush, have limited ability to prevent the disease. Here, we report a coated dental floss thread, termed "nanofloss," which uses polyphenol-based nanocoating to functionalize the floss thread with therapeutic agents. Multiple therapeutics can be integrated into the nanofloss including antibacterial small molecules and proteins. Flossing with nanofloss-delivered therapeutic agents to the challenging subgingival region with long-term retention even against the flushing action of the oral fluid in vivo. Our in vitro and in vivo studies demonstrate that chlorhexidine gluconate-loaded nanofloss effectively treats the subgingival infection by Porphyromonas gingivalis. Collectively, the nanofloss offers a promising and easily usable tool for targeted self-care of subgingival infection against periodontitis.

13.
ACS Nano ; 17(7): 6165-6177, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988207

RESUMO

Nanoparticles as drug delivery carriers have benefited diseases, including cancer, since the 1990s, and more recently, their promise to quickly and efficiently be mobilized to fight against global diseases such as in the COVID-19 pandemic have been proven. Despite these success stories, there are limited nanomedicine efforts for chronic kidney diseases (CKDs), which affect 844 million people worldwide and can be linked to a variety of genetic kidney diseases. In this Perspective, we provide a brief overview of the clinical status of genetic kidney diseases, background on kidney physiology and a summary of nanoparticle design that enable kidney access and targeting, and emerging technological strategies that can be applied for genetic kidney diseases, including rare and congenital kidney diseases. Finally, we conclude by discussing gaps in knowledge remaining in both genetic kidney diseases and kidney nanomedicine and collective efforts that are needed to bring together stakeholders from diverse expertise and industries to enable the development of the most relevant drug delivery strategies that can make an impact in the clinic.


Assuntos
COVID-19 , Nefropatias , Nanopartículas , Humanos , Nanomedicina , Pandemias , Sistemas de Liberação de Medicamentos , Rim , Nefropatias/genética , Nefropatias/tratamento farmacológico , Portadores de Fármacos/uso terapêutico
14.
Adv Sci (Weinh) ; 10(7): e2205389, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642846

RESUMO

Proteins are among the most common therapeutics for the treatment of diabetes, autoimmune diseases, cancer, and metabolic diseases, among others. Despite their common use, current protein therapies, most of which are injectables, have several limitations. Large proteins such as monoclonal antibodies (mAbs) suffer from poor absorption after subcutaneous injections, thus forcing their administration by intravenous injections. Even small proteins such as insulin suffer from slow pharmacokinetics which poses limitations in effective management of diabetes. Here, a deep eutectic-based delivery strategy is used to offer a generalized approach for improving protein absorption after subcutaneous injections. The lead formulation enhances absorption of mAbs after subcutaneous injections by ≈200%. The same composition also improves systemic absorption of subcutaneously injected insulin faster than Humalog, the current gold-standard of rapid acting insulin. Mechanistic studies reveal that the beneficial effect of deep eutectics on subcutaneous absorption is mediated by their ability to reduce the interactions of proteins with the subcutaneous matrix, especially collagen. Studies also confirm that these deep eutectics are safe for subcutaneous injections. Deep eutectic-based formulations described here open new possibilities for subcutaneous injections of therapeutic proteins.


Assuntos
Produtos Biológicos , Solventes Eutéticos Profundos , Humanos , Anticorpos Monoclonais/farmacocinética , Solventes Eutéticos Profundos/farmacologia , Solventes Eutéticos Profundos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/terapia , Injeções Subcutâneas/métodos , Insulina , Produtos Biológicos/administração & dosagem , Produtos Biológicos/uso terapêutico
15.
J Control Release ; 352: 1093-1103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351520

RESUMO

Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lipossomos/uso terapêutico , Bromelaínas/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Matriz Extracelular , Linhagem Celular Tumoral
16.
Biomater Adv ; 137: 212850, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929278

RESUMO

Therapeutic drug delivery is known to be influenced by interplay between various design parameters of delivery carriers which influence the drug uptake efficiency and subsequently the effectiveness of treatment. Amongst, the several design parameters such as size, shape and surface charge, particle shape is gaining attention as a crucial design parameter for development of robust and efficient delivery carriers. In this exploration, we investigated the influence of particle shape on injectability and therapeutic effectiveness of the delivery carriers using doxorubicin (DOX) conjugated polymeric microparticles. Results of injectability experiments demonstrated the influence of particle shape with anisotropic rod-shaped particles displaying increased injectability as against spherical particles. Impact of particle shape on therapeutic effectiveness was assessed against small cell lung cancer (SCLC) which was selected as a model disease. Results of cellular uptake studies revealed preferential uptake of rod-shaped particles than spherical particles in cancer cells. These results were further validated by in-vitro tumor simulation studies wherein rod-shaped particles displayed enhanced anti-tumorigenic activity along with distortion of tumor integrity against spheres. Furthermore, the impact of particle size was also assessed on cardiotoxicity, an adverse effect of DOX which limits its therapeutic use. Results illustrated that the high aspect ratio particles displayed diminished cardiotoxicity activity. These results provide valuable insights about influence of particle shape for designing efficient therapeutics.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Carcinoma de Pequenas Células do Pulmão , Cardiotoxicidade , Doxorrubicina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
17.
Adv Sci (Weinh) ; 9(24): e2201293, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780495

RESUMO

Adeno-associated virus (AAV)-mediated gene therapy is a promising therapeutic modality for curing many diseases including monogenic diseases. However, limited tissue-targeting and restricted re-administration due to the vector immunogenicity largely restrict its therapeutic potential. Here, using a red blood cell (RBC) as the carrier vehicle for AAV is demonstrated to improve its tissue-targeted transduction and enable its re-administration. Anchoring AAV to the RBC surface minimally affected its infectability toward endothelial cells. Meanwhile, AAV anchored onto RBCs is predominantly delivered to and shows efficient transduction in the lungs by virtue of the biophysical features of RBCs. RBC-anchored AAVs lead to a four- to five-fold enhancement in target gene expression in the lungsas compared to free AAVs following a single- or dual-dosing regimen. While RBC anchoring does not prevent the induction of adaptive immune responses against AAV, it results in successful transgene expression upon re-administration following prior AAV exposure. The ability to re-administer is partially attributed to the delayed and reduced AAV neutralization by neutralizing antibodies, resulting from the combination of limited exposure of physically confined AAVs and the short time required to reach the lungs. This study's findings suggest that the RBC-mediated approach is a promising strategy for repetitive, targeted AAV gene therapy.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Células Endoteliais , Eritrócitos , Terapia Genética
18.
J Control Release ; 345: 512-536, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337939

RESUMO

Many efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery. However, the EPR effect has been found to be highly variable and thus unreliable due to the complex tumor microenvironment. Various physical and pharmacological strategies have been explored to overcome this challenge. Here, we review key advances and emerging concepts of such EPR-enhancing strategies. Furthermore, we analyze 723 clinical trials of nanoparticles with EPR enhancers and discuss their clinical translation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Permeabilidade , Microambiente Tumoral
19.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214193

RESUMO

Ratiometric delivery of combination chemotherapy can achieve therapeutic efficacy based on synergistic interactions between drugs. It is critical to design such combinations with drugs that complement each other and reduce cancer growth through multiple mechanisms. Using hyaluronic acid (HA) as a carrier, two chemotherapeutic agents-doxorubicin (DOX) and camptothecin (CPT)-were incorporated and tested for their synergistic potency against a broad panel of blood-cancer cell lines. The pair also demonstrated the ability to achieve immunogenic cell death by increasing the surface exposure levels of Calreticulin, thereby highlighting its ability to induce apoptosis via an alternate pathway. Global proteomic profiling of cancer cells treated with HA-DOX-CPT identified pathways that could potentially predict patient sensitivity to HA-DOX-CPT. This lays the foundation for further exploration of integrating drug delivery and proteomics in personalized immunogenic chemotherapy.

20.
Bioeng Transl Med ; 7(1): e10245, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111947

RESUMO

Antiproliferative chemotherapeutic agents offer a potential effective treatment for inflammatory arthritis. However, their clinical application is limited by high systemic toxicity, low joint bioavailability as well as formulation challenges. Here, we report an intra-articular drug delivery system combining hyaluronic acid hydrogels and drug nanocrystals to achieve localized and sustained delivery of an antiproliferative chemotherapeutic agent camptothecin for long-term treatment of inflammatory arthritis. We synthesized a biocompatible, in situ-forming injectable hyaluronic acid hydrogel using a naturally occurring click chemistry: cyanobenzothiazole/cysteine reaction, which is the last step reaction in synthesizing D-luciferin in fireflies. This hydrogel was used to encapsulate camptothecin nanocrystals (size of 160-560 nm) which released free camptothecin in a sustained manner for 4 weeks. In vivo studies confirmed that the hydrogel remained in the joint over 4 weeks. By using the collagen-induced arthritis rat model, we demonstrate that the hydrogel-camptothecin formulation could alleviate arthritis severity as indicated by the joint size and interleukin-1ß level in the harvested joints, as well as from histological and microcomputed tomography evaluation of joints. The hydrogel-nanocrystal formulation strategy described here offers a potential solution for intra-articular therapy for inflammatory arthritis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA