Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
mBio ; 15(3): e0009524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38358246

RESUMO

Gastrointestinal nematode (GIN) infections are a major concern for the ruminant industry worldwide and result in significant production losses. Naturally occurring polyparasitism and increasing drug resistance that potentiate disease outcomes are observed among the most prevalent GINs of veterinary importance. Within the five major taxonomic clades, clade Va represents a group of GINs that predominantly affect the abomasum or small intestine of ruminants. However, the development of effective broad-spectrum anthelmintics against ruminant clade Va GINs has been challenged by a lack of comprehensive druggable genome resources. Here, we first assembled draft genomes for three clade Va species (Cooperia oncophora, Trichostrongylus colubriformis, and Ostertagia ostertagi) and compared them with closely related ruminant GINs. Genome-wide phylogenetic reconstruction showed a relationship among ruminant GINs structured by taxonomic classification. Orthogroup (OG) inference and functional enrichment analyses identified 220 clade Va-specific and Va-conserved OGs, enriched for functions related to cell cycle and cellular senescence. Further transcriptomic analysis identified 61 taxonomically and functionally conserved clade Va OGs that may function as drug targets for new broad-spectrum anthelmintics. Chemogenomic screening identified 11 compounds targeting homologs of these OGs, thus having potential anthelmintic activity. In in vitro phenotypic assays, three kinase inhibitors (digitoxigenin, K-252a, and staurosporine) exhibited broad-spectrum anthelmintic activities against clade Va GINs by obstructing the motility of exsheathed L3 (xL3) or molting of xL3 to L4. These results demonstrate valuable applications of the new ruminant GIN genomes in gaining better insights into their life cycles and offer a contemporary approach to discovering the next generation of anthelmintics.IMPORTANCEGastrointestinal nematode (GIN) infections in ruminants are caused by parasites that inhibit normal function in the digestive tract of cattle, sheep, and goats, thereby causing morbidity and mortality. Coinfection and increasing drug resistance to current therapeutic agents will continue to worsen disease outcomes and impose significant production losses on domestic livestock producers worldwide. In combination with ongoing therapeutic efforts, advancing the discovery of new drugs with novel modes of action is critical for better controlling GIN infections. The significance of this study is in assembling and characterizing new GIN genomes of Cooperia oncophora, Ostertagia ostertagi, and Trichostrongylus colubriformis for facilitating a multi-omics approach to identify novel, biologically conserved drug targets for five major GINs of veterinary importance. With this information, we were then able to demonstrate the potential of commercially available compounds as new anthelmintics.


Assuntos
Anti-Helmínticos , Doenças dos Bovinos , Gastroenteropatias , Nematoides , Infecções por Nematoides , Animais , Bovinos , Ovinos , Filogenia , Ruminantes/parasitologia , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/parasitologia , Infecções por Nematoides/veterinária , Cabras
2.
Sci Rep ; 13(1): 13726, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608002

RESUMO

Paragonimiasis is a zoonotic, food-borne trematode infection that affects 21 million people globally. Trematodes interact with their hosts via extracellular vesicles (EV) that carry protein and RNA cargo. We analyzed EV in excretory-secretory products (ESP) released by Paragonimus kellicotti adult worms cultured in vitro (EV ESP) and EV isolated from lung cyst fluid (EV CFP) recovered from infected gerbils. The majority of EV were approximately 30-50 nm in diameter. We identified 548 P. kellicotti-derived proteins in EV ESP by mass spectrometry and 8 proteins in EV CFP of which 7 were also present in EV ESP. No parasite-derived proteins were reliably detected in EV isolated from plasma samples. A cysteine protease (MK050848, CP-6) was the most abundant protein found in EV CFP in all technical and biological replicates. Immunolocalization of CP-6 showed strong labeling in the tegument of P. kellicotti and in the adjacent cyst and lung tissue that contained worm eggs. It is likely that CP-6 present in EV is involved in parasite-host interactions. These results provide new insights into interactions between Paragonimus and their mammalian hosts, and they provide potential clues for development of novel diagnostic tools and treatments.


Assuntos
Cistos , Vesículas Extracelulares , Paragonimus , Animais , Proteoma , Gerbillinae , Pulmão
3.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
4.
PLoS Negl Trop Dis ; 16(10): e0010878, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279280

RESUMO

Increasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection. The gut microbiomes of infected mice of both lines displayed, amongst other features, enhanced capacity for tryptophan and butyrate production, which might be linked to the activation of mechanisms aimed to prevent excessive injuries caused by migrating parasite eggs. Complementing data from previous studies, our findings suggest that the host gut microbiome might play a dual role in the pathophysiology of schistosomiasis, where intestinal bacteria may contribute to egg-associated pathology while, in turn, protect the host from uncontrolled tissue damage.


Assuntos
Microbioma Gastrointestinal , Microbiota , Esquistossomose mansoni , Esquistossomose , Camundongos , Animais , Roedores , Bactérias
5.
mBio ; 12(4): e0146821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253059

RESUMO

Tuberculosis (TB) is one of the leading causes of death due to a single infectious agent. The development of a TB vaccine that induces durable and effective immunity to Mycobacterium tuberculosis (Mtb) infection is urgently needed. Early and superior Mtb control can be induced in M. bovis Bacillus Calmette-Guérin (BCG)-vaccinated hosts when the innate immune response is targeted to generate effective vaccine-induced immunity. In the present study, we show that innate activation of DCs is critical for mucosal localization of clonally activated vaccine-induced CD4+ T cells in the lung and superior early Mtb control. In addition, our study reveals that Th1/Th17 cytokine axis play an important role in superior vaccine-induced immunity. Our studies also show that activation of the nuclear factor kappa-light-chain enhancer of activated B cell (NF-κß) pathway in lung epithelial cells is critical for the mucosal localization of activated vaccine-induced CD4+ T cells for rapid Mtb control. Thus, our study provides novel insights into the immune mechanisms that can overcome TB vaccine bottlenecks and provide early rapid Mtb control. IMPORTANCE Tuberculosis is a leading cause of death due to single infectious agent accounting 1.4 million deaths each year. The only licensed vaccine, BCG, is not effective due to variable efficacy. In our study, we determined the early immune events necessary for achieving complete protection in a BCG-vaccinated host. Our study reveals that innate activation of DCs can mediate superior and early Mtb control in BCG-vaccinated mice through lung epithelial cell signaling and localization of clonal activated, Mtb antigen-specific, cytokine-producing CD4+ T cells within the lung parenchyma and airways. Thus, our study provides novel insights into the immune mechanisms that can overcome TB vaccine bottlenecks and provide early rapid Mtb control.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/imunologia , Pulmão/imunologia , Ativação Linfocitária , Mycobacterium tuberculosis/imunologia , Transdução de Sinais/imunologia , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Células Epiteliais/microbiologia , Imunidade Inata , Pulmão/citologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/microbiologia , Vacinação
6.
Commun Biol ; 4(1): 290, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674719

RESUMO

SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.


Assuntos
COVID-19/imunologia , Degranulação Celular , Interferons/fisiologia , Neutrófilos/fisiologia , SARS-CoV-2 , Idoso , Animais , Antígenos CD36/fisiologia , COVID-19/etiologia , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/fisiologia
7.
Parasitol Res ; 120(2): 535-545, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415393

RESUMO

Paragonimiasis is a foodborne trematode infection that affects 23 million people, mainly in Asia. Lung fluke infections lead frequently to chronic cough with fever and hemoptysis, and are often confused with lung cancer or tuberculosis. Paragonimiasis can be efficiently treated with praziquantel, but diagnosis is often delayed, and patients are frequently treated for other conditions. To improve diagnosis, we selected five Paragonimus kellicotti proteins based on transcriptional abundance, recognition by patient sera, and conservation among trematodes and expressed them as His-fusion proteins in Escherichia coli. Sequences for these proteins have 76-99% identity with amino acid sequences for orthologs in the genomes of Paragonimus westermani, Paragonimus heterotremus, and Paragonimus miyazakii. Immunohistology studies showed that antibodies raised to four recombinant proteins bound to the tegument of adult P. kellicotti worms, at the parasite host interface. Only a known egg antigen was absent from the tegument but present in developing and mature eggs. We evaluated the diagnostic potential of these antigens by Western blot with sera from patients with paragonimiasis (from MO and the Philippines), fascioliasis, and schistosomiasis, and with sera from healthy North American controls. Two recombinant proteins (a cysteine protease and a myoglobin) showed the highest sensitivity and specificity as diagnostic antigens, and they detected antibodies in sera from paragonimiasis patients with early or mature infections. In contrast, antibodies to egg yolk ferritin appeared to be specific marker for patients with adult fluke infections that produce eggs. Our study has identified and localized antigens that are promising for serodiagnosis of human paragonimiasis.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Paragonimíase/diagnóstico , Paragonimus/imunologia , Praziquantel/uso terapêutico , Adulto , Animais , Anti-Helmínticos , Antígenos de Helmintos/metabolismo , Ásia , Gerbillinae , Humanos , Imuno-Histoquímica , Paragonimíase/metabolismo , Paragonimíase/parasitologia , Paragonimus westermani/imunologia , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos
8.
J Infect Dis ; 221(10): 1636-1646, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31832640

RESUMO

Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical "hypervirulent" Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.


Assuntos
Linfócitos B/fisiologia , Granuloma/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia , Animais , Granuloma/patologia , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/fisiologia , Macaca mulatta , Macrófagos/fisiologia , Camundongos Knockout , Tuberculose Pulmonar/patologia , Virulência
9.
J Infect Dis ; 222(12): 2103-2113, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31844885

RESUMO

BACKGROUND: Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. METHODS: Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. RESULTS: Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. CONCLUSIONS: Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy.


Assuntos
Anti-Helmínticos/uso terapêutico , Citocinas/imunologia , Praziquantel/uso terapêutico , Esquistossomose Urinária/imunologia , Transcriptoma , Imunidade Adaptativa , Animais , Criança , Feminino , Citometria de Fluxo , Gabão/epidemiologia , Humanos , Imunidade Inata , Estudos Longitudinais , Masculino , RNA-Seq , Esquistossomose Urinária/tratamento farmacológico
10.
Mol Biol Evol ; 37(1): 84-99, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501870

RESUMO

Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.


Assuntos
Evolução Biológica , Fasciolidae/genética , Genoma Helmíntico , Animais , Família Multigênica
11.
Am J Trop Med Hyg ; 101(5): 1009-1017, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31482782

RESUMO

Stunting, defined as height-for-age Z score equal to or lower than -2, is associated with increased childhood mortality, cognitive impairment, and chronic diseases. The aim of the study was to investigate the relationship between linear growth, intestinal damage, and systemic inflammation in infants at risk of stunting. We followed up 78 infants aged 5-12 months living in rural areas of Peru for 6 months. Blood samples for biomarkers of intestinal damage (intestinal fatty-acid-binding protein [I-FABP] and zonulin) and systemic inflammation (interleukin-1ß, interleukin-6, tumor necrosis factor α [TNF-α], soluble CD14, and lipopolysaccharide-binding protein [LBP]) and fecal samples for microbiome analysis were collected at baseline and closure of the study. The children's growth and health status were monitored through biweekly home visits by trained staff. Twenty-one percent of the children became stunted: compared with non-stunted children, they had worse nutritional parameters and higher levels of serum I-FABP at baseline. The likelihood of becoming stunted was strongly associated with an increase in sCD14 over time; LBP and TNF-α showed a trend toward increase in stunted children but not in controls. The fecal microbiota composition of stunted children had an increased beta diversity compared with that of healthy controls throughout the study. The relative abundance of Ruminococcus 1 and 2, Clostridium sensu stricto, and Collinsella increased in children becoming stunted but not in controls, whereas Providencia abundance decreased. In conclusion, stunting in our population was preceded by an increase in markers of enterocyte turnover and differences in the fecal microbiota and was associated with increasing levels of systemic inflammation markers.


Assuntos
Microbioma Gastrointestinal , Transtornos do Crescimento/etiologia , Enteropatias/patologia , Mucosa Intestinal/patologia , Desenvolvimento Infantil , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Fezes/microbiologia , Feminino , Regulação da Expressão Gênica , Transtornos do Crescimento/epidemiologia , Humanos , Lactente , Enteropatias/epidemiologia , Masculino , Estado Nutricional , Peru , Projetos Piloto
12.
Gastroenterology ; 157(4): 1109-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255652

RESUMO

BACKGROUND & AIMS: The intestinal microbiome might affect the development and severity of nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without NAFLD. METHODS: We performed a prospective, observational, cross-sectional study of 87 children (age range, 8-17 years) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). Fecal samples were collected and microbiome composition and functions were assessed using 16S ribosomal RNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were identified using gene set enrichment analysis. RESULTS: Fecal microbiomes of children with NAFLD had lower α-diversity than those of control children (3.32 vs 3.52, P = .016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had the lowest α-diversity (control, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH, 2.97; P = .001). High abundance of Prevotella copri was associated with more severe fibrosis (P = .036). Genes for lipopolysaccharide biosynthesis were enriched in microbiomes from children with NASH (P < .001). Classification and regression tree model with level of alanine aminotransferase and relative abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-d-manno-octulosonate 8-phosphate-phosphatase identified patients with NASH with an area under the receiver operating characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in the fecal microbiomes of patients with moderate to severe fibrosis (P < .001). Classification and regression tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar biosynthesis protein had good accuracy for identifying case children with moderate to severe fibrosis (area under the receiver operating characteristic curve, 0.87). CONCLUSIONS: In an analysis of fecal microbiomes of children with NAFLD, we associated NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal microbiome might contribute to the pathogenesis of NAFLD and be used as markers of disease or severity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/genética , Adolescente , Bactérias/classificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Criança , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Metagenoma , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Ribotipagem , Índice de Gravidade de Doença
13.
Sci Rep ; 9(1): 9085, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235822

RESUMO

Targeting chokepoint enzymes in metabolic pathways has led to new drugs for cancers, autoimmune disorders and infectious diseases. This is also a cornerstone approach for discovery and development of anthelmintics against nematode and flatworm parasites. Here, we performed omics-driven knowledge-based identification of chokepoint enzymes as anthelmintic targets. We prioritized 10 of 186 phylogenetically conserved chokepoint enzymes and undertook a target class repurposing approach to test and identify new small molecules with broad spectrum anthelmintic activity. First, we identified and tested 94 commercially available compounds using an in vitro phenotypic assay, and discovered 11 hits that inhibited nematode motility. Based on these findings, we performed chemogenomic screening and tested 32 additional compounds, identifying 6 more active hits. Overall, 6 intestinal (single-species), 5 potential pan-intestinal (whipworm and hookworm) and 6 pan-Phylum Nematoda (intestinal and filarial species) small molecule inhibitors were identified, including multiple azoles, Tadalafil and Torin-1. The active hit compounds targeted three different target classes in humans, which are involved in various pathways, including carbohydrate, amino acid and nucleotide metabolism. Last, using representative inhibitors from each target class, we demonstrated in vivo efficacy characterized by negative effects on parasite fecundity in hamsters infected with hookworms.


Assuntos
Anti-Helmínticos/farmacologia , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cricetinae , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Nematoides/efeitos dos fármacos , Fenótipo , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
14.
Sci Rep ; 8(1): 15921, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374177

RESUMO

Parasitic worms have a remarkable ability to modulate host immune responses through several mechanisms including excreted/secreted proteins (ESP), yet the exact nature of these proteins and their targets often remains elusive. Here, we performed mass spectrometry analyses of ESP (TsESP) from larval and adult stages of the pig whipworm Trichuris suis (Ts) and identified ~350 proteins. Transcriptomic analyses revealed large subsets of differentially expressed genes in the various life cycle stages of the parasite. Exposure of bone marrow-derived macrophages and dendritic cells to TsESP markedly diminished secretion of the pro-inflammatory cytokines TNFα and IL-12p70. Conversely, TsESP exposure strongly induced release of the anti-inflammatory cytokine IL-10, and also induced high levels of nitric oxide (NO) and upregulated arginase activity in macrophages. Interestingly, TsESP failed to directly induce CD4+ CD25+ FoxP3+ regulatory T cells (Treg cells), while OVA-pulsed TsESP-treated dendritic cells suppressed antigen-specific OT-II CD4+ T cell proliferation. Fractionation of TsESP identified a subset of proteins that promoted anti-inflammatory functions, an activity that was recapitulated using recombinant T. suis triosephosphate isomerase (TPI) and nucleoside diphosphate kinase (NDK). Our study helps illuminate the intricate balance that is characteristic of parasite-host interactions at the immunological interface, and further establishes the principle that specific parasite-derived proteins can modulate immune cell functions.


Assuntos
Proteínas de Helminto/metabolismo , Trichuris/metabolismo , Animais , Arginase/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Estágios do Ciclo de Vida , Macrófagos/citologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Suínos/parasitologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Trichuris/crescimento & desenvolvimento
15.
Nat Microbiol ; 3(10): 1099-1108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224802

RESUMO

Tuberculosis is a significant global health threat, with one-third of the world's population infected with its causative agent Mycobacterium tuberculosis (Mtb). The emergence of multidrug-resistant (MDR) Mtb that is resistant to the frontline anti-tubercular drugs rifampicin and isoniazid forces treatment with toxic second-line drugs. Currently, ~4% of new and ~21% of previously treated tuberculosis cases are either rifampicin-drug-resistant or MDR Mtb infections1. The specific molecular host-pathogen interactions mediating the rapid worldwide spread of MDR Mtb strains remain poorly understood. W-Beijing Mtb strains are highly prevalent throughout the world and associated with increased drug resistance2. In the early 1990s, closely related MDR W-Beijing Mtb strains (W strains) were identified in large institutional outbreaks in New York City and caused high mortality rates3. The production of interleukin-1ß (IL-1ß) by macrophages coincides with the shift towards aerobic glycolysis, a metabolic process that mediates protection against drug-susceptible Mtb4. Here, using a collection of MDR W-Mtb strains, we demonstrate that the overexpression of Mtb cell wall lipids, phthiocerol dimycocerosates, bypasses the interleukin 1 receptor, type I (IL-1R1) signalling pathway, instead driving the induction of interferon-ß (IFN-ß) to reprogram macrophage metabolism. Importantly, Mtb carrying a drug resistance-conferring single nucleotide polymorphism in rpoB (H445Y)5 can modulate host macrophage metabolic reprogramming. These findings transform our mechanistic understanding of how emerging MDR Mtb strains may acquire drug resistance single nucleotide polymorphisms, thereby altering Mtb surface lipid expression and modulating host macrophage metabolic reprogramming.


Assuntos
Proteínas de Bactérias/genética , Parede Celular/química , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Tuberculose/imunologia , Animais , Antituberculosos/farmacologia , Parede Celular/genética , Células Cultivadas , Feminino , Expressão Gênica , Interferon beta/metabolismo , Interleucina-1/metabolismo , Lipídeos/genética , Macrófagos/microbiologia , Masculino , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-1/metabolismo , Rifampina/farmacologia , Transdução de Sinais
16.
Mucosal Immunol ; 11(6): 1727-1742, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115997

RESUMO

C-C motif chemokine receptor 2 (CCR2) is a major chemokine axis that recruits myeloid cells including monocytes and macrophages. Thus far, CCR2-/- mice have not been found to be susceptible to infection with Mycobacterium tuberculosis (Mtb). Here, using a prototype W-Beijing family lineage 2 Mtb strain, HN878, we show that CCR2-/- mice exhibit increased susceptibility to tuberculosis (TB). Following exposure to Mtb HN878, alveolar macrophages (AMs) are amongst the earliest cells infected. We show that AMs accumulate early in the airways following infection and express CCR2. During disease progression, CCR2-expressing AMs exit the airways and localize within the TB granulomas. RNA-sequencing of sorted airway and non-airway AMs from infected mice show distinct gene expression profiles, suggesting that upon exit from airways and localization within granulomas, AMs become classically activated. The absence of CCR2+ cells specifically at the time of AM egress from the airways resulted in enhanced susceptibility to Mtb infection. Furthermore, infection with an Mtb HN878 mutant lacking phenolic glycolipid (PGL) expression still resulted in increased susceptibility in CCR2-/- mice. Together, these data show a novel role for CCR2 in protective immunity against clinically relevant Mtb infections.


Assuntos
Granuloma/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/fisiologia , Receptores CCR2/metabolismo , Tuberculose/imunologia , Animais , Movimento Celular , Quimiocina CCL2/metabolismo , Predisposição Genética para Doença , Humanos , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Receptores CCR2/genética , Transcriptoma , Virulência
17.
Behav Brain Res ; 329: 200-204, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487220

RESUMO

Deeper understanding of signaling mechanisms underlying bitterness perception in people is essential for designing novel and effective bitter blockers, which could enhance nutrition and compliance with orally administered bitter-tasting drugs. Here we show that variability in a human odorant-binding protein gene, OBPIIa, associates with individual differences in bitterness perception of fat (oleic acid) and of a prototypical bitter stimulus, 6-n-propylthiouracil (PROP), suggesting a novel olfactory role in the modulation of bitterness sensitivity.


Assuntos
Células Epiteliais/metabolismo , Lipocalinas/metabolismo , Percepção Gustatória/genética , Paladar/genética , Adulto , Cálcio/metabolismo , Células Epiteliais/efeitos dos fármacos , Feminino , Preferências Alimentares/fisiologia , Genótipo , Humanos , Lipocalinas/genética , Masculino , Odorantes , Ácido Oleico/farmacologia , Mucosa Olfatória/citologia , Psicofísica , Paladar/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia , Adulto Jovem
18.
Sci Rep ; 6: 36797, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827438

RESUMO

A reduced diversity of the gastrointestinal commensal microbiota is associated with the development of several inflammatory diseases. Recent reports in humans and animal models have demonstrated the beneficial therapeutic effects of infections by parasitic worms (helminths) in some inflammatory disorders, such as inflammatory bowel disease (IBD) and coeliac disease (CeD). Interestingly, these studies have described how helminths may alter the intestinal microbiota, potentially representing a mechanism by which they regulate inflammation. However, for practical reasons, these reports have primarily analysed the faecal microbiota. In the present investigation, we have assessed, for the first time, the changes in the microbiota at the site of infection by a parasitic helminth (hookworm) and gluten-dependent inflammation in humans with CeD using biopsy tissue from the duodenum. Hookworm infection and gluten exposure were associated with an increased abundance of species within the Bacteroides phylum, as well as increases in the richness and diversity of the tissue-resident microbiota within the intestine, results that are consistent with previous reports using other helminth species in humans and animal models. Hence, this may represent a mechanism by which parasitic helminths may restore intestinal immune homeostasis and exert a therapeutic benefit in CeD, and potentially other inflammatory disorders.


Assuntos
Ancylostomatoidea/fisiologia , Bactérias/classificação , Doença Celíaca/microbiologia , Duodeno/microbiologia , Ancylostomatoidea/imunologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Doença Celíaca/imunologia , Doença Celíaca/parasitologia , Duodeno/imunologia , Duodeno/parasitologia , Fezes/microbiologia , Humanos , Microbiota , Análise de Sequência de DNA
19.
Parasit Vectors ; 9(1): 518, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27677574

RESUMO

BACKGROUND: The intestine of hookworms contains enzymes and proteins involved in the blood-feeding process of the parasite and is therefore a promising source of possible vaccine antigens. One such antigen, the hemoglobin-digesting intestinal aspartic protease known as Na-APR-1 from the human hookworm Necator americanus, is currently a lead candidate antigen in clinical trials, as is Na-GST-1 a heme-detoxifying glutathione S-transferase. METHODS: In order to discover additional hookworm vaccine antigens, messenger RNA was obtained from the intestine of male hookworms, Ancylostoma ceylanicum, maintained in hamsters. RNA-seq was performed using Illumina high-throughput sequencing technology. The genes expressed in the hookworm intestine were compared with those expressed in the whole worm and those genes overexpressed in the parasite intestine transcriptome were further analyzed. RESULTS: Among the lead transcripts identified were genes encoding for proteolytic enzymes including an A. ceylanicum APR-1, but the most common proteases were cysteine-, serine-, and metallo-proteases. Also in abundance were specific transporters of key breakdown metabolites, including amino acids, glucose, lipids, ions and water; detoxifying and heme-binding glutathione S-transferases; a family of cysteine-rich/antigen 5/pathogenesis-related 1 proteins (CAP) previously found in high abundance in parasitic nematodes; C-type lectins; and heat shock proteins. These candidates will be ranked for downstream antigen target selection based on key criteria including abundance, uniqueness in the parasite versus the vertebrate host, as well as solubility and yield of expression. CONCLUSION: The intestinal transcriptome of A. ceylanicum provides useful information for the identification of proteins involved in the blood-feeding process, representing a first step towards a reverse vaccinology approach to a human hookworm vaccine.

20.
Infect Genet Evol ; 39: 201-211, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829384

RESUMO

Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns.


Assuntos
Descoberta de Drogas , Helmintíase/parasitologia , Helmintos/efeitos dos fármacos , Helmintos/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Bases de Dados Genéticas , Helmintíase/tratamento farmacológico , Humanos , Mutação INDEL , Modelos Moleculares , Nematoides , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA