Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood Adv ; 3(20): 3080-3091, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31648335

RESUMO

In humans, platelet count within the normal range is required for physiological hemostasis, but, adversely, platelets also support pathological thrombosis. Moreover, by releasing growth factors, they may enhance neoplastic proliferation. We hypothesize that platelet count correlates with platelet-dependent pathologies, even within the range of hemostatic competence. Because platelet production is promoted by thrombopoietin signaling through the myeloproliferative leukemia virus oncogene (cMPL), a receptor expressed on megakaryocytes, we evaluated the feasibility of selective targeting of hepatic thrombopoietin production to test this hypothesis. We synthesized murine- and primate-specific antisense oligonucleotides (THPO-ASO) that silence hepatic thrombopoietin gene (THPO) expression without blocking extrahepatic THPO. Repeated doses of THPO-ASO were administered to mice and a baboon, causing a sustained 50% decline in plasma thrombopoietin levels and platelet count within 4 weeks in both species. To investigate whether reducing platelet count within the translationally relevant hemostatic range could alter a neoplastic process, we administered THPO-ASO to 6-week-old transgenic MMTV-PyMT mice that develop early ductal atypia that progresses into cMPL-negative fatal metastatic breast cancer within 2 to 3 months. THPO-ASO treatment increased the average time to euthanasia (primary humane endpoint) at 2 cm3 combined palpable tumor volume. Our results show that THPO-ASO reduced blood platelet count, plasma platelet factor 4, vascular endothelial growth factor, thrombopoietin levels, bone marrow megakaryocyte density, tumor growth rate, proliferation index, vascularization, platelet and macrophage content, and pulmonary metastases vs untreated controls. These findings confirm that sustained and moderate pharmacological platelet count reduction is feasible with THPO-ASO administration and can delay progression of certain platelet-dependent pathological processes within a safe hemostatic platelet count range.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/etiologia , Inativação Gênica , Fígado/metabolismo , Contagem de Plaquetas , Trombopoetina/genética , Animais , Neoplasias da Mama/patologia , Movimento Celular , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Haplorrinos , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , Microambiente Tumoral/genética
2.
Am J Physiol Cell Physiol ; 316(2): C264-C273, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462538

RESUMO

Cancer-associated thrombosis is a common first presenting sign of malignancy and is currently the second leading cause of death in cancer patients after their malignancy. However, the molecular mechanisms underlying cancer-associated thrombosis remain undefined. In this study, we aimed to develop a better understanding of how cancer cells affect the coagulation cascade and platelet activation to induce a prothrombotic phenotype. Our results show that colon cancer cells trigger platelet activation in a manner dependent on cancer cell tissue factor (TF) expression, thrombin generation, activation of the protease-activated receptor 4 (PAR4) on platelets and consequent release of ADP and thromboxane A2. Platelet-colon cancer cell interactions potentiated the release of platelet-derived extracellular vesicles (EVs) rather than cancer cell-derived EVs. Our data show that single colon cancer cells were capable of recruiting and activating platelets and generating fibrin in plasma under shear flow. Finally, in a retrospective analysis of colon cancer patients, we found that the number of venous thromboembolism events was 4.5 times higher in colon cancer patients than in a control population. In conclusion, our data suggest that platelet-cancer cell interactions and perhaps platelet procoagulant EVs may contribute to the prothrombotic phenotype of colon cancer patients. Our work may provide rationale for targeting platelet-cancer cell interactions with PAR4 antagonists together with aspirin and/or ADP receptor antagonists as a potential intervention to limit cancer-associated thrombosis, balancing safety with efficacy.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Neoplasias do Colo/sangue , Trombose/sangue , Plaquetas/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Estudos Transversais , Humanos , Estudos Retrospectivos , Trombose/patologia
3.
Sci Rep ; 8(1): 6564, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700384

RESUMO

Platelets, components of hemostasis, when present in excess (>400 K/µL, thrombocytosis) have also been associated with worse outcomes in lung, ovarian, breast, renal, and colorectal cancer patients. Associations between thrombocytosis and cancer outcomes have been made mostly from single-time-point studies, often at the time of diagnosis. Using laboratory data from the Department of Veterans Affairs (VA), we examined the potential benefits of using longitudinal platelet counts in improving patient prognosis predictions. Ten features (summary statistics and engineered features) were derived to describe the platelet counts of 10,000+ VA lung, prostate, and colon cancer patients and incorporated into an age-adjusted LASSO regression analysis to determine feature importance, and predict overall or relapse-free survival, which was compared to the previously used approach of monitoring for thrombocytosis near diagnosis (Postdiag AG400 model). Temporal features describing acute platelet count increases/decreases were found to be important in cancer survival and relapse-survival that helped stratify good and bad outcomes of cancer patient groups. Predictions of overall and relapse-free survival were improved by up to 30% compared to the Postdiag AG400 model. Our study indicates the association of temporally derived platelet count features with a patients' prognosis predictions.


Assuntos
Neoplasias do Colo/sangue , Neoplasias do Colo/mortalidade , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Contagem de Plaquetas , Neoplasias da Próstata/sangue , Neoplasias da Próstata/mortalidade , Adulto , Idoso , Biomarcadores , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/terapia , Comorbidade , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Estudos Retrospectivos
4.
Front Oncol ; 8: 78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619344

RESUMO

In this review, we discuss the interaction between cancer and markers of inflammation (such as levels of inflammatory cells and proteins) in the circulation, and the potential benefits of routinely monitoring these markers in peripheral blood measurement assays. Next, we discuss the prognostic value and limitations of using inflammatory markers such as neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios and C-reactive protein measurements. Furthermore, the review discusses the benefits of combining multiple types of measurements and longitudinal tracking to improve staging and prognosis prediction of patients with cancer, and the ability of novel in silico frameworks to leverage this high-dimensional data.

5.
Platelets ; 29(8): 773-778, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29265902

RESUMO

Cancer metastasis is a dynamic process during which cancer cells separate from a primary tumor, migrate through the vessel wall into the bloodstream, and extravasate at distant sites to form secondary colonies. During this process, circulating tumor cells are subjected to shear stress forces from blood flow, and in contact with plasma proteins and blood cells of the immune and hemostatic system, including platelets. Many studies have shown an association between high platelet count and cancer metastasis, suggesting that platelets may play an occult role in tumorigenesis. This mini-review summarizes recent and emerging discoveries of mechanisms by which cancer cells activate platelets and the role of activated platelets in promoting tumor growth and metastasis. Moreover, the review discusses how aspirin has the potential for being clinically used as an adjuvant in cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Neoplasias , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Animais , Humanos , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Contagem de Plaquetas
6.
Platelets ; 29(4): 383-394, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28523947

RESUMO

The release of ADP from platelet dense granules and its binding to platelet P2Y12 receptors is key to amplifying the initial hemostatic response and propagating thrombus formation. P2Y12 has thus emerged as a therapeutic target to safely and effectively prevent secondary thrombotic events in patients with acute coronary syndrome or a history of myocardial infarction. Pharmacological inhibition of P2Y12 receptors represents a useful approach to better understand the signaling mediated by these receptors and to elucidate the role of these receptors in a multitude of platelet hemostatic and thrombotic responses. The present work examined and compared the effects of four different P2Y12 inhibitors (MRS2395, ticagrelor, PSB 0739, and AR-C 66096) on platelet function in a series of in vitro studies of platelet dense granule secretion and trafficking, calcium generation, and protein phosphorylation. Our results show that in platelets activated with the PAR-1 agonist TRAP-6 (thrombin receptor-activating peptide), inhibition of P2Y12 with the antagonist MRS2395, but not ticagrelor, PSB 0739 or AR-C 66096, potentiated human platelet dense granule trafficking to the plasma membrane and release into the extracellular space, cytosolic Ca2+ influx, and phosphorylation of GSK3ß-Ser9 through a PKC-dependent pathway. These results suggest that inhibition of P2Y12 with MRS2395 may act in concert with PAR-1 signaling and result in the aberrant release of ADP by platelet dense granules, thus reducing or counteracting the anticipated anti-platelet efficacy of this inhibitor.


Assuntos
Adenina/análogos & derivados , Plaquetas/metabolismo , Fragmentos de Peptídeos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/sangue , Valeratos/farmacologia , Adenina/farmacologia , Plaquetas/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Humanos , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Receptor PAR-1/agonistas
7.
Converg Sci Phys Oncol ; 3(2)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29081989

RESUMO

Platelets are anucleate cells in the blood at concentrations of 150,000 to 400,000 cells/µL and play a key role in hemostasis. Several studies have suggested that platelets contribute to cancer progression and cancer-associated thrombosis. In this review, we provide an overview of the biochemical and biophysical mechanisms by which platelets interact with cancer cells and review the evidence supporting a role for platelet-enhanced metastasis of cancer, and venous thromboembolism (VTE) in patients with cancer. We discuss the potential for and limitations of platelet counts to discriminate cancer disease burden and prognosis. Lastly, we consider more advanced diagnostic approaches to improve studies on the interaction between the hemostatic system and cancer cells.

9.
Am J Physiol Cell Physiol ; 312(2): C176-C189, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903583

RESUMO

Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein.


Assuntos
Aspirina/administração & dosagem , Plaquetas/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Humanos , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores da Agregação Plaquetária/administração & dosagem , Resultado do Tratamento
10.
Blood Rev ; 30(1): 11-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26219246

RESUMO

The hemostatic system is often subverted in patients with cancer, resulting in life-threatening venous thrombotic events. Despite the multifactorial and complex etiology of cancer-associated thrombosis, changes in the expression and activity of cancer-derived tissue factor (TF) - the principle initiator of the coagulation cascade - are considered key to malignant hypercoagulopathy and to the pathophysiology of thrombosis. However, many of the molecular and cellular mechanisms coupling the hemostatic degeneration to malignancy remain largely uncharacterized. In this review we discuss some of the tumor-intrinsic and tumor-extrinsic mechanisms that may contribute to the prothrombotic state of cancer, and we bring into focus the potential for circulating tumor cells (CTCs) in advancing our understanding of the field. We also summarize the current status of anti-coagulant therapy for the treatment of thrombosis in patients with cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Tromboplastina/genética , Trombose/patologia , Anticoagulantes/uso terapêutico , Antineoplásicos/efeitos adversos , Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Fator VIIa/genética , Fator VIIa/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células Neoplásicas Circulantes/patologia , Ativação Plaquetária/efeitos dos fármacos , Protrombina/genética , Protrombina/metabolismo , Tromboplastina/metabolismo , Trombose/complicações , Trombose/tratamento farmacológico , Trombose/genética
11.
Am J Physiol Cell Physiol ; 308(10): C792-802, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25788574

RESUMO

Circulating tumor cells (CTC) have been implicated in the hematogenous spread of cancer. To investigate the fluid phase of cancer from a physical sciences perspective, the multi-institutional Physical Sciences-Oncology Center (PS-OC) Network performed multidisciplinary biophysical studies of single CTC and CTC aggregates from a patient with breast cancer. CTCs, ranging from single cells to aggregates comprised of 2-5 cells, were isolated using the high-definition CTC assay and biophysically profiled using quantitative phase microscopy. Single CTCs and aggregates were then modeled in an in vitro system comprised of multiple breast cancer cell lines and microfluidic devices used to model E-selectin mediated rolling in the vasculature. Using a numerical model coupling elastic collisions between red blood cells and CTCs, the dependence of CTC vascular margination on single CTCs and CTC aggregate morphology and stiffness was interrogated. These results provide a multifaceted characterization of single CTC and CTC aggregate dynamics in the vasculature and illustrate a framework to integrate clinical, biophysical, and mathematical approaches to enhance our understanding of the fluid phase of cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Movimento Celular , Selectina E/metabolismo , Células Neoplásicas Circulantes/patologia , Transcitose/fisiologia , Neoplasias da Mama/metabolismo , Contagem de Células/métodos , Feminino , Humanos , Técnicas Analíticas Microfluídicas/métodos
12.
Molecules ; 19(11): 17559-77, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25361422

RESUMO

Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol) can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycol)s are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol) derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether) by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Alcinos/química , Aminoácidos/química , Azidas/química , Plaquetas/efeitos dos fármacos , Compostos de Epóxi/química , Humanos , Polímeros/química , Compostos de Sulfidrila/química
13.
Blood ; 123(2): 249-60, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24258815

RESUMO

Platelets play a role in cancer by acting as a dynamic reservoir of effectors that facilitate tumor vascularization, growth, and metastasis. However, little information is available about the mechanism of tumor cell-induced platelet secretion (TCIPS) or the molecular machinery by which effector molecules are released from platelets. Here we demonstrate that tumor cells directly induce platelet secretion. Preincubation of platelets with human colon cancer (Caco-2), prostate cancer (PC3M-luc), or breast cancer cells (MDA-MB-231;MCF-7) resulted in a marked dose-dependent secretion of dense granules. Importantly, TCIPS preceded aggregation which always displayed a characteristic lag time. We investigated the role of platelet receptors and downstream molecules in TCIPS. The most potent modulators of TCIPS were the pharmacologic antagonists of Syk kinase, phospholipase C and protein kinase C, all downstream mediators of the immunoreceptor tyrosine-based activation motif (ITAM) cascade in platelets. Supporting this, we demonstrated a central role for the immune Fcγ receptor IIa (FcγRIIa) in mediating platelet-tumor cell cross-talk. In conclusion, we demonstrate that cancer cells can promote platelet dense-granule secretion, which is required to augment platelet aggregation. In addition, we show a novel essential role for FcγRIIa in prostate cancer cell-induced platelet activation opening the opportunity to develop novel antimetastatic therapies.


Assuntos
Plaquetas/metabolismo , Neoplasias/metabolismo , Ativação Plaquetária , Receptores de IgG/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas , Receptor PAR-1/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Receptores de Tromboxanos/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA